Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the end behavior of the function [tex]\( g(x) = 4|x-2| - 3 \)[/tex], let's analyze the function as [tex]\( x \)[/tex] approaches negative and positive infinity.
1. As [tex]\( x \)[/tex] approaches negative infinity:
When [tex]\( x \)[/tex] is a very large negative number, the term [tex]\(|x-2|\)[/tex] will also be a large positive number since the absolute value of a large negative number shifted by 2 is still large. Therefore, [tex]\(|x-2| \approx |x|\)[/tex] and thus behaves like [tex]\( |x| \)[/tex]. Consequently,
[tex]\[ g(x) \approx 4|x| - 3. \][/tex]
Since [tex]\( |x| \)[/tex] equals [tex]\( -x \)[/tex] when [tex]\( x \)[/tex] is negative, we have:
[tex]\[ |x-2| \approx -x \][/tex]
Thus,
[tex]\[ g(x) \approx 4(-x) - 3 = -4x - 3. \][/tex]
As [tex]\( x \)[/tex] approaches negative infinity, [tex]\( -4x - 3 \)[/tex] will decrease without bound, approaching negative infinity.
Therefore, as [tex]\( x \)[/tex] approaches negative infinity, [tex]\( g(x) \)[/tex] approaches negative infinity.
2. As [tex]\( x \)[/tex] approaches positive infinity:
When [tex]\( x \)[/tex] is a very large positive number, the term [tex]\(|x-2|\)[/tex] will be approximately equal to [tex]\( x \)[/tex] itself, because the shift by 2 becomes negligible for very large values of [tex]\( x \)[/tex]. Thus,
[tex]\[ |x-2| \approx x. \][/tex]
Then,
[tex]\[ g(x) \approx 4x - 3. \][/tex]
As [tex]\( x \)[/tex] approaches positive infinity, [tex]\( 4x - 3 \)[/tex] will increase without bound, approaching positive infinity.
Therefore, as [tex]\( x \)[/tex] approaches positive infinity, [tex]\( g(x) \)[/tex] approaches positive infinity.
In summary, the correct selections for the function [tex]\( g(x) = 4|x-2| - 3 \)[/tex] are:
As [tex]\( x \)[/tex] approaches negative infinity, [tex]\( g(x) \)[/tex] approaches negative infinity.
As [tex]\( x \)[/tex] approaches positive infinity, [tex]\( g(x) \)[/tex] approaches positive infinity.
1. As [tex]\( x \)[/tex] approaches negative infinity:
When [tex]\( x \)[/tex] is a very large negative number, the term [tex]\(|x-2|\)[/tex] will also be a large positive number since the absolute value of a large negative number shifted by 2 is still large. Therefore, [tex]\(|x-2| \approx |x|\)[/tex] and thus behaves like [tex]\( |x| \)[/tex]. Consequently,
[tex]\[ g(x) \approx 4|x| - 3. \][/tex]
Since [tex]\( |x| \)[/tex] equals [tex]\( -x \)[/tex] when [tex]\( x \)[/tex] is negative, we have:
[tex]\[ |x-2| \approx -x \][/tex]
Thus,
[tex]\[ g(x) \approx 4(-x) - 3 = -4x - 3. \][/tex]
As [tex]\( x \)[/tex] approaches negative infinity, [tex]\( -4x - 3 \)[/tex] will decrease without bound, approaching negative infinity.
Therefore, as [tex]\( x \)[/tex] approaches negative infinity, [tex]\( g(x) \)[/tex] approaches negative infinity.
2. As [tex]\( x \)[/tex] approaches positive infinity:
When [tex]\( x \)[/tex] is a very large positive number, the term [tex]\(|x-2|\)[/tex] will be approximately equal to [tex]\( x \)[/tex] itself, because the shift by 2 becomes negligible for very large values of [tex]\( x \)[/tex]. Thus,
[tex]\[ |x-2| \approx x. \][/tex]
Then,
[tex]\[ g(x) \approx 4x - 3. \][/tex]
As [tex]\( x \)[/tex] approaches positive infinity, [tex]\( 4x - 3 \)[/tex] will increase without bound, approaching positive infinity.
Therefore, as [tex]\( x \)[/tex] approaches positive infinity, [tex]\( g(x) \)[/tex] approaches positive infinity.
In summary, the correct selections for the function [tex]\( g(x) = 4|x-2| - 3 \)[/tex] are:
As [tex]\( x \)[/tex] approaches negative infinity, [tex]\( g(x) \)[/tex] approaches negative infinity.
As [tex]\( x \)[/tex] approaches positive infinity, [tex]\( g(x) \)[/tex] approaches positive infinity.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.