Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine how many solutions exist for the equation [tex]\(\left|\frac{1}{2} x + 1\right| = 5\)[/tex], we need to solve the absolute value equation. Here are the detailed steps:
1. Understanding Absolute Value Equations:
The absolute value equation [tex]\(\left|\frac{1}{2} x + 1\right| = 5\)[/tex] means that [tex]\(\frac{1}{2} x + 1\)[/tex] can be either 5 or -5 because the absolute value of a number [tex]\(a\)[/tex] is equal to 5, if [tex]\(a = 5\)[/tex] or [tex]\(a = -5\)[/tex].
2. Setting Up Two Equations:
We break this into two separate linear equations to solve for [tex]\(x\)[/tex].
- First Equation:
[tex]\[\frac{1}{2} x + 1 = 5\][/tex]
- Second Equation:
[tex]\[\frac{1}{2} x + 1 = -5\][/tex]
3. Solving Each Equation Separately:
- First Equation: [tex]\(\frac{1}{2} x + 1 = 5\)[/tex]
1. Subtract 1 from both sides:
[tex]\[\frac{1}{2} x = 4\][/tex]
2. Multiply both sides by 2:
[tex]\[x = 8\][/tex]
- Second Equation: [tex]\(\frac{1}{2} x + 1 = -5\)[/tex]
1. Subtract 1 from both sides:
[tex]\[\frac{1}{2} x = -6\][/tex]
2. Multiply both sides by 2:
[tex]\[x = -12\][/tex]
4. Counting the Number of Solutions:
From the solving steps above, we find two distinct values of [tex]\(x\)[/tex], which are [tex]\(x = 8\)[/tex] and [tex]\(x = -12\)[/tex].
Therefore, there are 2 solutions to the equation [tex]\(\left|\frac{1}{2} x + 1\right| = 5\)[/tex].
Thus, the correct answer is:
C. 2
1. Understanding Absolute Value Equations:
The absolute value equation [tex]\(\left|\frac{1}{2} x + 1\right| = 5\)[/tex] means that [tex]\(\frac{1}{2} x + 1\)[/tex] can be either 5 or -5 because the absolute value of a number [tex]\(a\)[/tex] is equal to 5, if [tex]\(a = 5\)[/tex] or [tex]\(a = -5\)[/tex].
2. Setting Up Two Equations:
We break this into two separate linear equations to solve for [tex]\(x\)[/tex].
- First Equation:
[tex]\[\frac{1}{2} x + 1 = 5\][/tex]
- Second Equation:
[tex]\[\frac{1}{2} x + 1 = -5\][/tex]
3. Solving Each Equation Separately:
- First Equation: [tex]\(\frac{1}{2} x + 1 = 5\)[/tex]
1. Subtract 1 from both sides:
[tex]\[\frac{1}{2} x = 4\][/tex]
2. Multiply both sides by 2:
[tex]\[x = 8\][/tex]
- Second Equation: [tex]\(\frac{1}{2} x + 1 = -5\)[/tex]
1. Subtract 1 from both sides:
[tex]\[\frac{1}{2} x = -6\][/tex]
2. Multiply both sides by 2:
[tex]\[x = -12\][/tex]
4. Counting the Number of Solutions:
From the solving steps above, we find two distinct values of [tex]\(x\)[/tex], which are [tex]\(x = 8\)[/tex] and [tex]\(x = -12\)[/tex].
Therefore, there are 2 solutions to the equation [tex]\(\left|\frac{1}{2} x + 1\right| = 5\)[/tex].
Thus, the correct answer is:
C. 2
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.