Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine for which reactions the enthalpy change of formation, [tex]\(\Delta H_{f}^{\circ}\)[/tex], is equal to the enthalpy change of reaction, [tex]\(\Delta H_{rm}^{\circ}\)[/tex], we need to check which reactions are formation reactions. A formation reaction is defined as the formation of one mole of a compound from its elements in their standard states.
Here are the reactions:
1. [tex]\( \mathrm{Li (s) + \frac{1}{2} Cl_2(g) \rightarrow LiCl (s)} \)[/tex]
2. [tex]\( \mathrm{2 H_2(g) + O_2(g) \rightarrow 2 H_2O (g)} \)[/tex]
3. [tex]\( \mathrm{Li (s) + \frac{1}{2} Cl_2(l) \rightarrow LiCl (s)} \)[/tex]
4. [tex]\( \mathrm{H_2O_2(g) \rightarrow \frac{1}{2} O_2(g) + H_2O (g)} \)[/tex]
5. [tex]\( \mathrm{H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O (g)} \)[/tex]
6. [tex]\( \mathrm{2 Li (s) + Cl_2(g) \rightarrow 2 LiCl (s)} \)[/tex]
Step-by-step analysis of each reaction:
1. [tex]\(\mathrm{Li (s) + \frac{1}{2} Cl_2(g) \rightarrow LiCl (s)}\)[/tex]
- This reaction forms one mole of lithium chloride ([tex]\( \mathrm{LiCl} \)[/tex]) from its elements in their standard states (solid lithium and chlorine gas).
- This is a formation reaction. So, [tex]\(\Delta H_{rm}^{\circ} = \Delta H_{f}^{\circ}\)[/tex] for this reaction.
2. [tex]\(\mathrm{2 H_2(g) + O_2(g) \rightarrow 2 H_2O (g)}\)[/tex]
- This reaction forms two moles of water ([tex]\( \mathrm{H_2O} \)[/tex]), not one mole.
- This is not a standard formation reaction. Therefore, for this reaction, [tex]\(\Delta H_{rm}^{\circ} \neq \Delta H_{f}^{\circ}\)[/tex].
3. [tex]\(\mathrm{Li (s) + \frac{1}{2} Cl_2(l) \rightarrow LiCl (s)}\)[/tex]
- This reaction involves chlorine in its liquid state, not its standard gaseous state.
- This is not strictly a standard formation reaction. Therefore, [tex]\(\Delta H_{rm}^{\circ} \neq \Delta H_{f}^{\circ}\)[/tex].
4. [tex]\(\mathrm{H_2O_2(g) \rightarrow \frac{1}{2} O_2(g) + H_2O (g)}\)[/tex]
- This reaction is a decomposition reaction, not a formation reaction.
- Therefore, [tex]\(\Delta H_{rm}^{\circ} \neq \Delta H_{f}^{\circ}\)[/tex].
5. [tex]\(\mathrm{H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O (g)}\)[/tex]
- This reaction forms one mole of water ([tex]\( \mathrm{H_2O} \)[/tex]) from its elements in their standard states (hydrogen gas and oxygen gas).
- This is a formation reaction. So, [tex]\(\Delta H_{rm}^{\circ} = \Delta H_{f}^{\circ}\)[/tex] for this reaction.
6. [tex]\(\mathrm{2 Li (s) + Cl_2(g) \rightarrow 2 LiCl (s)}\)[/tex]
- This reaction forms two moles of lithium chloride ([tex]\( \mathrm{LiCl} \)[/tex]), not one mole.
- This is not a standard formation reaction. Therefore, [tex]\(\Delta H_{rm}^{\circ} \neq \Delta H_{f}^{\circ}\)[/tex].
From our analysis, the reactions where [tex]\(\Delta H_{rm}^{\circ} = \Delta H_{f}^{\circ}\)[/tex] of the product(s) are:
1. [tex]\( \mathrm{Li (s) + \frac{1}{2} Cl_2(g) \rightarrow LiCl (s)} \)[/tex]
5. [tex]\( \mathrm{H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O (g)} \)[/tex]
Therefore, the correct answers are reactions 1 and 5: [tex]\([1, 5]\)[/tex].
Here are the reactions:
1. [tex]\( \mathrm{Li (s) + \frac{1}{2} Cl_2(g) \rightarrow LiCl (s)} \)[/tex]
2. [tex]\( \mathrm{2 H_2(g) + O_2(g) \rightarrow 2 H_2O (g)} \)[/tex]
3. [tex]\( \mathrm{Li (s) + \frac{1}{2} Cl_2(l) \rightarrow LiCl (s)} \)[/tex]
4. [tex]\( \mathrm{H_2O_2(g) \rightarrow \frac{1}{2} O_2(g) + H_2O (g)} \)[/tex]
5. [tex]\( \mathrm{H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O (g)} \)[/tex]
6. [tex]\( \mathrm{2 Li (s) + Cl_2(g) \rightarrow 2 LiCl (s)} \)[/tex]
Step-by-step analysis of each reaction:
1. [tex]\(\mathrm{Li (s) + \frac{1}{2} Cl_2(g) \rightarrow LiCl (s)}\)[/tex]
- This reaction forms one mole of lithium chloride ([tex]\( \mathrm{LiCl} \)[/tex]) from its elements in their standard states (solid lithium and chlorine gas).
- This is a formation reaction. So, [tex]\(\Delta H_{rm}^{\circ} = \Delta H_{f}^{\circ}\)[/tex] for this reaction.
2. [tex]\(\mathrm{2 H_2(g) + O_2(g) \rightarrow 2 H_2O (g)}\)[/tex]
- This reaction forms two moles of water ([tex]\( \mathrm{H_2O} \)[/tex]), not one mole.
- This is not a standard formation reaction. Therefore, for this reaction, [tex]\(\Delta H_{rm}^{\circ} \neq \Delta H_{f}^{\circ}\)[/tex].
3. [tex]\(\mathrm{Li (s) + \frac{1}{2} Cl_2(l) \rightarrow LiCl (s)}\)[/tex]
- This reaction involves chlorine in its liquid state, not its standard gaseous state.
- This is not strictly a standard formation reaction. Therefore, [tex]\(\Delta H_{rm}^{\circ} \neq \Delta H_{f}^{\circ}\)[/tex].
4. [tex]\(\mathrm{H_2O_2(g) \rightarrow \frac{1}{2} O_2(g) + H_2O (g)}\)[/tex]
- This reaction is a decomposition reaction, not a formation reaction.
- Therefore, [tex]\(\Delta H_{rm}^{\circ} \neq \Delta H_{f}^{\circ}\)[/tex].
5. [tex]\(\mathrm{H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O (g)}\)[/tex]
- This reaction forms one mole of water ([tex]\( \mathrm{H_2O} \)[/tex]) from its elements in their standard states (hydrogen gas and oxygen gas).
- This is a formation reaction. So, [tex]\(\Delta H_{rm}^{\circ} = \Delta H_{f}^{\circ}\)[/tex] for this reaction.
6. [tex]\(\mathrm{2 Li (s) + Cl_2(g) \rightarrow 2 LiCl (s)}\)[/tex]
- This reaction forms two moles of lithium chloride ([tex]\( \mathrm{LiCl} \)[/tex]), not one mole.
- This is not a standard formation reaction. Therefore, [tex]\(\Delta H_{rm}^{\circ} \neq \Delta H_{f}^{\circ}\)[/tex].
From our analysis, the reactions where [tex]\(\Delta H_{rm}^{\circ} = \Delta H_{f}^{\circ}\)[/tex] of the product(s) are:
1. [tex]\( \mathrm{Li (s) + \frac{1}{2} Cl_2(g) \rightarrow LiCl (s)} \)[/tex]
5. [tex]\( \mathrm{H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O (g)} \)[/tex]
Therefore, the correct answers are reactions 1 and 5: [tex]\([1, 5]\)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.