Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the type of metal for the unknown sample, we need to follow these steps:
1. Calculate the density of the unknown metal sample.
2. Determine the densities of the known metal samples.
3. Compare the density of the unknown sample with the densities of the known samples to find the closest match.
### Step 1: Calculate the density of the unknown metal sample
The density of a material can be calculated using the formula:
[tex]\[ \text{Density} = \frac{\text{Mass}}{\text{Volume}} \][/tex]
For the unknown metal sample:
[tex]\[ \text{Mass} = 33.5 \, \text{g} \][/tex]
[tex]\[ \text{Volume} = 3.2 \, \text{cm}^3 \][/tex]
[tex]\[ \text{Density} = \frac{33.5 \, \text{g}}{3.2 \, \text{cm}^3} = 10.46875 \, \text{g/cm}^3 \][/tex]
### Step 2: Calculate the densities of the known metal samples
Using the same density formula for each known metal:
- Aluminum:
[tex]\[ \text{Mass} = 14.6 \, \text{g} \][/tex]
[tex]\[ \text{Volume} = 5.4 \, \text{cm}^3 \][/tex]
[tex]\[ \text{Density} = \frac{14.6 \, \text{g}}{5.4 \, \text{cm}^3} \approx 2.70 \, \text{g/cm}^3 \][/tex]
- Iron:
[tex]\[ \text{Mass} = 33.1 \, \text{g} \][/tex]
[tex]\[ \text{Volume} = 4.2 \, \text{cm}^3 \][/tex]
[tex]\[ \text{Density} = \frac{33.1 \, \text{g}}{4.2 \, \text{cm}^3} = 7.88 \, \text{g/cm}^3 \][/tex]
- Lead:
[tex]\[ \text{Mass} = 35.2 \, \text{g} \][/tex]
[tex]\[ \text{Volume} = 3.1 \, \text{cm}^3 \][/tex]
[tex]\[ \text{Density} = \frac{35.2 \, \text{g}}{3.1 \, \text{cm}^3} \approx 11.35 \, \text{g/cm}^3 \][/tex]
- Magnesium:
[tex]\[ \text{Mass} = 10.6 \, \text{g} \][/tex]
[tex]\[ \text{Volume} = 6.1 \, \text{cm}^3 \][/tex]
[tex]\[ \text{Density} = \frac{10.6 \, \text{g}}{6.1 \, \text{cm}^3} \approx 1.74 \, \text{g/cm}^3 \][/tex]
- Silver:
[tex]\[ \text{Mass} = 47.2 \, \text{g} \][/tex]
[tex]\[ \text{Volume} = 4.5 \, \text{cm}^3 \][/tex]
[tex]\[ \text{Density} = \frac{47.2 \, \text{g}}{4.5 \, \text{cm}^3} \approx 10.49 \, \text{g/cm}^3 \][/tex]
### Step 3: Compare the densities
We now compare the density of the unknown sample (10.46875 g/cm³) with the densities of the known samples:
- Aluminum: 2.70 g/cm³
- Iron: 7.88 g/cm³
- Lead: 11.35 g/cm³
- Magnesium: 1.74 g/cm³
- Silver: 10.49 g/cm³
The density of the unknown sample (10.46875 g/cm³) is closest to the density of silver (10.49 g/cm³).
Therefore, the type of metal for the unknown sample is most likely silver. Among the given choices, the correct answer is not listed directly; however, the density closest in the provided table to that of the unknown sample would be that of silver.
1. Calculate the density of the unknown metal sample.
2. Determine the densities of the known metal samples.
3. Compare the density of the unknown sample with the densities of the known samples to find the closest match.
### Step 1: Calculate the density of the unknown metal sample
The density of a material can be calculated using the formula:
[tex]\[ \text{Density} = \frac{\text{Mass}}{\text{Volume}} \][/tex]
For the unknown metal sample:
[tex]\[ \text{Mass} = 33.5 \, \text{g} \][/tex]
[tex]\[ \text{Volume} = 3.2 \, \text{cm}^3 \][/tex]
[tex]\[ \text{Density} = \frac{33.5 \, \text{g}}{3.2 \, \text{cm}^3} = 10.46875 \, \text{g/cm}^3 \][/tex]
### Step 2: Calculate the densities of the known metal samples
Using the same density formula for each known metal:
- Aluminum:
[tex]\[ \text{Mass} = 14.6 \, \text{g} \][/tex]
[tex]\[ \text{Volume} = 5.4 \, \text{cm}^3 \][/tex]
[tex]\[ \text{Density} = \frac{14.6 \, \text{g}}{5.4 \, \text{cm}^3} \approx 2.70 \, \text{g/cm}^3 \][/tex]
- Iron:
[tex]\[ \text{Mass} = 33.1 \, \text{g} \][/tex]
[tex]\[ \text{Volume} = 4.2 \, \text{cm}^3 \][/tex]
[tex]\[ \text{Density} = \frac{33.1 \, \text{g}}{4.2 \, \text{cm}^3} = 7.88 \, \text{g/cm}^3 \][/tex]
- Lead:
[tex]\[ \text{Mass} = 35.2 \, \text{g} \][/tex]
[tex]\[ \text{Volume} = 3.1 \, \text{cm}^3 \][/tex]
[tex]\[ \text{Density} = \frac{35.2 \, \text{g}}{3.1 \, \text{cm}^3} \approx 11.35 \, \text{g/cm}^3 \][/tex]
- Magnesium:
[tex]\[ \text{Mass} = 10.6 \, \text{g} \][/tex]
[tex]\[ \text{Volume} = 6.1 \, \text{cm}^3 \][/tex]
[tex]\[ \text{Density} = \frac{10.6 \, \text{g}}{6.1 \, \text{cm}^3} \approx 1.74 \, \text{g/cm}^3 \][/tex]
- Silver:
[tex]\[ \text{Mass} = 47.2 \, \text{g} \][/tex]
[tex]\[ \text{Volume} = 4.5 \, \text{cm}^3 \][/tex]
[tex]\[ \text{Density} = \frac{47.2 \, \text{g}}{4.5 \, \text{cm}^3} \approx 10.49 \, \text{g/cm}^3 \][/tex]
### Step 3: Compare the densities
We now compare the density of the unknown sample (10.46875 g/cm³) with the densities of the known samples:
- Aluminum: 2.70 g/cm³
- Iron: 7.88 g/cm³
- Lead: 11.35 g/cm³
- Magnesium: 1.74 g/cm³
- Silver: 10.49 g/cm³
The density of the unknown sample (10.46875 g/cm³) is closest to the density of silver (10.49 g/cm³).
Therefore, the type of metal for the unknown sample is most likely silver. Among the given choices, the correct answer is not listed directly; however, the density closest in the provided table to that of the unknown sample would be that of silver.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.