Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine what transformation occurs when the absolute value function [tex]\( f(x) = |x| \)[/tex] is multiplied by [tex]\(-3\)[/tex], let's analyze the steps:
1. Starting Function: Begin with the given function [tex]\( f(x) = |x| \)[/tex].
2. Apply the Multiplication by [tex]\(-3\)[/tex]: When we multiply [tex]\( f(x) \)[/tex] by [tex]\(-3\)[/tex], the new function becomes [tex]\( g(x) = -3|x| \)[/tex].
Next, we look at what this transformation does to the graph:
- Reflection across the [tex]\( x \)[/tex]-axis:
- The original function [tex]\( f(x) = |x| \)[/tex] has all its values non-negative. However, multiplying by [tex]\(-3\)[/tex] changes the sign of all values, making them non-positive. This effect is equivalent to flipping the graph of [tex]\( f(x) = |x| \)[/tex] upside down, reflecting it across the [tex]\( x \)[/tex]-axis.
- Vertical Stretch by a Factor of 3:
- The multiplication by 3 (regardless of the negative sign) scales the values of [tex]\( |x| \)[/tex] by a factor of 3. This means that every point on the graph is moved three times farther from the [tex]\( x \)[/tex]-axis, which is a vertical stretch by a factor of 3.
Therefore, when the absolute value function [tex]\( f(x)=|x| \)[/tex] is multiplied by [tex]\(-3 \)[/tex], the graph undergoes:
1. A reflection across the [tex]\( x \)[/tex]-axis.
2. A vertical stretch by a factor of 3.
So, the correct transformation is:
Reflection across the [tex]\( x \)[/tex]-axis and vertical stretch by 3.
1. Starting Function: Begin with the given function [tex]\( f(x) = |x| \)[/tex].
2. Apply the Multiplication by [tex]\(-3\)[/tex]: When we multiply [tex]\( f(x) \)[/tex] by [tex]\(-3\)[/tex], the new function becomes [tex]\( g(x) = -3|x| \)[/tex].
Next, we look at what this transformation does to the graph:
- Reflection across the [tex]\( x \)[/tex]-axis:
- The original function [tex]\( f(x) = |x| \)[/tex] has all its values non-negative. However, multiplying by [tex]\(-3\)[/tex] changes the sign of all values, making them non-positive. This effect is equivalent to flipping the graph of [tex]\( f(x) = |x| \)[/tex] upside down, reflecting it across the [tex]\( x \)[/tex]-axis.
- Vertical Stretch by a Factor of 3:
- The multiplication by 3 (regardless of the negative sign) scales the values of [tex]\( |x| \)[/tex] by a factor of 3. This means that every point on the graph is moved three times farther from the [tex]\( x \)[/tex]-axis, which is a vertical stretch by a factor of 3.
Therefore, when the absolute value function [tex]\( f(x)=|x| \)[/tex] is multiplied by [tex]\(-3 \)[/tex], the graph undergoes:
1. A reflection across the [tex]\( x \)[/tex]-axis.
2. A vertical stretch by a factor of 3.
So, the correct transformation is:
Reflection across the [tex]\( x \)[/tex]-axis and vertical stretch by 3.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.