Answered

Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

What is the equation of a line that contains the point [tex](2,1)[/tex] and is perpendicular to the line [tex]y=3x-4[/tex]?

A. [tex]y=-\frac{1}{3}x+\frac{5}{3}[/tex]
B. [tex]y=-\frac{1}{3}x-4[/tex]
C. [tex]y=3x-5[/tex]
D. [tex]y=3x-4[/tex]


Sagot :

To find the equation of a line that contains the point [tex]\((2, 1)\)[/tex] and is perpendicular to the line [tex]\(y = 3x - 4\)[/tex], we can follow these steps:

1. Find the Slope of the Given Line:

The given line is [tex]\(y = 3x - 4\)[/tex]. The slope of this line is the coefficient of [tex]\(x\)[/tex], which is 3.

2. Find the Slope of the Perpendicular Line:

The slope of a line perpendicular to another line is the negative reciprocal of the original line's slope. Therefore, the slope of the perpendicular line is:
[tex]\[ \text{slope}_{\text{perpendicular}} = -\frac{1}{\text{slope}_{\text{original}}} = -\frac{1}{3} \][/tex]

3. Use the Point-Slope Form to Find the Equation:

The point-slope form of the equation of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\(m\)[/tex] is the slope and [tex]\((x_1, y_1)\)[/tex] is a point on the line.

Plugging the given point [tex]\((2, 1)\)[/tex] and the perpendicular slope [tex]\(-\frac{1}{3}\)[/tex]:
[tex]\[ y - 1 = -\frac{1}{3}(x - 2) \][/tex]

4. Solve for the Equation in Slope-Intercept Form:

First, distribute the slope on the right-hand side:
[tex]\[ y - 1 = -\frac{1}{3}x + \frac{2}{3} \][/tex]
Then, add 1 to both sides to solve for [tex]\(y\)[/tex]:
[tex]\[ y = -\frac{1}{3}x + \frac{2}{3} + 1 \][/tex]

Convert 1 to [tex]\(\frac{3}{3}\)[/tex] to combine the fractions:
[tex]\[ y = -\frac{1}{3}x + \frac{2}{3} + \frac{3}{3} \][/tex]
[tex]\[ y = -\frac{1}{3}x + \frac{5}{3} \][/tex]

So, the equation of the line that is perpendicular to [tex]\(y = 3x - 4\)[/tex] and passes through the point [tex]\((2, 1)\)[/tex] is:
[tex]\[ y = -\frac{1}{3}x + \frac{5}{3} \][/tex]

Hence, the correct option is:
A. [tex]\(y = -\frac{1}{3}x + \frac{5}{3}\)[/tex]