Answered

Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Which expression gives the distance between the points [tex]$(-3, 4)$[/tex] and [tex]$(6, -2)$[/tex]?

A. [tex]$(-3-6)^2+(4+2)^2$[/tex]

B. [tex]$(-3-4)^2+(6+2)^2$[/tex]

C. [tex]$\sqrt{(-3-6)^2+(4+2)^2}$[/tex]

D. [tex]$\sqrt{(-3-4)^2+(6+2)^2}$[/tex]

Sagot :

Let's determine which expression gives the correct distance between the points [tex]\((-3, 4)\)[/tex] and [tex]\((6, -2)\)[/tex].

1. Identify Coordinates and Differences:
- The coordinates of the first point [tex]\((x_1, y_1)\)[/tex] are [tex]\((-3, 4)\)[/tex].
- The coordinates of the second point [tex]\((x_2, y_2)\)[/tex] are [tex]\((6, -2)\)[/tex].

2. Calculate the Differences:
- The difference in the x-coordinates [tex]\(dx\)[/tex] is [tex]\(x_2 - x_1 = 6 - (-3) = 6 + 3 = 9\)[/tex].
- The difference in the y-coordinates [tex]\(dy\)[/tex] is [tex]\(y_2 - y_1 = -2 - 4 = -2 - 4 = -6\)[/tex].

3. Square the Differences:
- Squaring the difference in x-coordinates: [tex]\(dx^2 = 9^2 = 81\)[/tex].
- Squaring the difference in y-coordinates: [tex]\(dy^2 = -6^2 = 36\)[/tex].

4. Sum of the Squared Differences:
- Adding these values: [tex]\(dx^2 + dy^2 = 81 + 36 = 117\)[/tex].

5. Taking the Square Root of the Sum:
- The distance [tex]\(d\)[/tex] is obtained by taking the square root of the sum of the squared differences: [tex]\(\sqrt{117} \approx 10.816653826391969\)[/tex].

6. Determine the Correct Expression:
- Option A: [tex]\((-3-6)^2+(4+2)^2 = (-9)^2 + (6)^2 = 81 + 36\)[/tex], but this is just the sum of the squared differences, not the actual distance (no square root).
- Option B: [tex]\((-3-4)^2+(6+2)^2 = (-7)^2 + (8)^2 = 49 + 64\)[/tex], which calculates to 113 and is incorrect.
- Option C: [tex]\(\sqrt{(-3-6)^2+(4+2)^2} = \sqrt{(-9)^2 + (6)^2} = \sqrt{81 + 36} = \sqrt{117} \approx 10.816653826391969\)[/tex], which matches our calculated distance and is thus correct.
- Option D: [tex]\(\sqrt{(-3-4)^2+(6+2)^2} = \sqrt{(-7)^2 + (8)^2} = \sqrt{49 + 64} = \sqrt{113}\)[/tex], which is incorrect.

Therefore, the correct expression that gives the distance between the points [tex]\((-3,4)\)[/tex] and [tex]\((6,-2)\)[/tex] is:

[tex]\[ \boxed{C} \: \sqrt{(-3-6)^2+(4+2)^2} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.