Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the most likely genotypes of the parents that result in 100 percent heterozygous offspring for the trait of plant height, let's analyze each potential cross mentioned:
1. Cross: [tex]$Tt \times tt$[/tex]
- One parent is heterozygous ([tex]$Tt$[/tex]), and the other parent is homozygous recessive ([tex]$tt$[/tex]).
- The possible offspring from this cross would be:
- [tex]$Tt$[/tex] (from T from the first parent and t from the second parent)
- [tex]$tt$[/tex] (from t from both parents)
- The genotypes of the offspring: [tex]$Tt$[/tex] and [tex]$Tt$[/tex].
- Since all offspring (100%) are heterozygous ([tex]$Tt$[/tex]), this cross is a suitable candidate.
2. Cross: [tex]$Tt \times Tt$[/tex]
- Both parents are heterozygous ([tex]$Tt$[/tex]).
- The possible offspring from this cross would be:
- [tex]$TT$[/tex] (from T from both parents)
- [tex]$Tt$[/tex] (from T from one parent and t from the other parent)
- [tex]$Tt$[/tex] (from t from one parent and T from the other parent)
- [tex]$tt$[/tex] (from t from both parents)
- The genotypes of the offspring: [tex]$TT$[/tex], [tex]$Tt$[/tex], [tex]$Tt$[/tex], and [tex]$tt$[/tex].
- The ratio would be approximately 1:2:1 (25% [tex]$TT$[/tex], 50% [tex]$Tt$[/tex], 25% [tex]$tt$[/tex]), so not all offspring would be heterozygous. This cross cannot result in 100% heterozygous offspring.
3. Cross: [tex]$tt \times tt$[/tex]
- Both parents are homozygous recessive ([tex]$tt$[/tex]).
- The possible offspring from this cross would be:
- [tex]$tt$[/tex] (from t from both parents)
- The genotypes of the offspring: [tex]$tt$[/tex].
- Since all offspring (100%) are homozygous recessive, not heterozygous, this cross is incorrect for the given condition.
4. Cross: [tex]$\pi \times t t$[/tex]
- The genotype [tex]$\pi$[/tex] is not a valid genotype in genetics. This suggestion appears to be erroneous or unrelated to standard genetic notation.
- Thus, we can disregard this option.
From the analysis above, the cross that results in 100% heterozygous ([tex]$Tt$[/tex]) offspring is:
[tex]$Tt \times tt$[/tex].
Therefore, the most likely genotypes of the parents are:
[tex]\[ \boxed{Tt \times tt} \][/tex]
1. Cross: [tex]$Tt \times tt$[/tex]
- One parent is heterozygous ([tex]$Tt$[/tex]), and the other parent is homozygous recessive ([tex]$tt$[/tex]).
- The possible offspring from this cross would be:
- [tex]$Tt$[/tex] (from T from the first parent and t from the second parent)
- [tex]$tt$[/tex] (from t from both parents)
- The genotypes of the offspring: [tex]$Tt$[/tex] and [tex]$Tt$[/tex].
- Since all offspring (100%) are heterozygous ([tex]$Tt$[/tex]), this cross is a suitable candidate.
2. Cross: [tex]$Tt \times Tt$[/tex]
- Both parents are heterozygous ([tex]$Tt$[/tex]).
- The possible offspring from this cross would be:
- [tex]$TT$[/tex] (from T from both parents)
- [tex]$Tt$[/tex] (from T from one parent and t from the other parent)
- [tex]$Tt$[/tex] (from t from one parent and T from the other parent)
- [tex]$tt$[/tex] (from t from both parents)
- The genotypes of the offspring: [tex]$TT$[/tex], [tex]$Tt$[/tex], [tex]$Tt$[/tex], and [tex]$tt$[/tex].
- The ratio would be approximately 1:2:1 (25% [tex]$TT$[/tex], 50% [tex]$Tt$[/tex], 25% [tex]$tt$[/tex]), so not all offspring would be heterozygous. This cross cannot result in 100% heterozygous offspring.
3. Cross: [tex]$tt \times tt$[/tex]
- Both parents are homozygous recessive ([tex]$tt$[/tex]).
- The possible offspring from this cross would be:
- [tex]$tt$[/tex] (from t from both parents)
- The genotypes of the offspring: [tex]$tt$[/tex].
- Since all offspring (100%) are homozygous recessive, not heterozygous, this cross is incorrect for the given condition.
4. Cross: [tex]$\pi \times t t$[/tex]
- The genotype [tex]$\pi$[/tex] is not a valid genotype in genetics. This suggestion appears to be erroneous or unrelated to standard genetic notation.
- Thus, we can disregard this option.
From the analysis above, the cross that results in 100% heterozygous ([tex]$Tt$[/tex]) offspring is:
[tex]$Tt \times tt$[/tex].
Therefore, the most likely genotypes of the parents are:
[tex]\[ \boxed{Tt \times tt} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.