Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine whether a function is linear, we need to check if the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] varies proportionally, leading to a constant rate of change (slope).
### Let's analyze both functions:
#### Function A
The data points for Function A are:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 3 & 6 & 9 & 12 & 15 \\ \hline y & 9 & 36 & 81 & 144 & 225 \\ \hline \end{array} \][/tex]
To check if [tex]\( y \)[/tex] is a linear function of [tex]\( x \)[/tex], we look at the differences in [tex]\( y \)[/tex] for equal changes in [tex]\( x \)[/tex]:
[tex]\[ \begin{aligned} \Delta y_{1} &= y_{2} - y_{1} = 36 - 9 = 27, \quad \Delta x_{1} = x_{2} - x_{1} = 6 - 3 = 3, \quad \text{slope} = \frac{\Delta y_{1}}{\Delta x_{1}} = \frac{27}{3} = 9\\ \Delta y_{2} &= y_{3} - y_{2} = 81 - 36 = 45, \quad \Delta x_{2} = x_{3} - x_{2} = 9 - 6 = 3, \quad \text{slope} = \frac{\Delta y_{2}}{\Delta x_{2}} = \frac{45}{3} = 15\\ \Delta y_{3} &= y_{4} - y_{3} = 144 - 81 = 63, \quad \Delta x_{3} = x_{4} - x_{3} = 12 - 9 = 3, \quad \text{slope} = \frac{\Delta y_{3}}{\Delta x_{3}} = \frac{63}{3} = 21\\ \Delta y_{4} &= y_{5} - y_{4} = 225 - 144 = 81, \quad \Delta x_{4} = x_{5} - x_{4} = 15 - 12 = 3, \quad \text{slope} = \frac{\Delta y_{4}}{\Delta x_{4}} = \frac{81}{3} = 27 \end{aligned} \][/tex]
Since the slopes are not constant, Function A is not linear.
#### Function B
The data points for Function B are:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 5 & 10 & 15 & 20 & 25 \\ \hline y & 8 & 16 & 24 & 32 & 40 \\ \hline \end{array} \][/tex]
To check if [tex]\( y \)[/tex] is a linear function of [tex]\( x \)[/tex], we look at the differences in [tex]\( y \)[/tex] for equal changes in [tex]\( x \)[/tex]:
[tex]\[ \begin{aligned} \Delta y_{1} &= y_{2} - y_{1} = 16 - 8 = 8, \quad \Delta x_{1} = x_{2} - x_{1} = 10 - 5 = 5, \quad \text{slope} = \frac{\Delta y_{1}}{\Delta x_{1}} = \frac{8}{5} = \frac{8}{5}\\ \Delta y_{2} &= y_{3} - y_{2} = 24 - 16 = 8, \quad \Delta x_{2} = x_{3} - x_{2} = 15 - 10 = 5, \quad \text{slope} = \frac{\Delta y_{2}}{\Delta x_{2}} = \frac{8}{5}\\ \Delta y_{3} &= y_{4} - y_{3} = 32 - 24 = 8, \quad \Delta x_{3} = x_{4} - x_{3} = 20 - 15 = 5, \quad \text{slope} = \frac{\Delta y_{3}}{\Delta x_{3}} = \frac{8}{5}\\ \Delta y_{4} &= y_{5} - y_{4} = 40 - 32 = 8, \quad \Delta x_{4} = x_{5} - x_{4} = 25 - 20 = 5, \quad \text{slope} = \frac{\Delta y_{4}}{\Delta x_{4}} = \frac{8}{5} \end{aligned} \][/tex]
Since the slopes are constant, Function B is linear.
### Conclusion
From our analysis, only Function B has a constant rate of change and is therefore linear. The answer is B) Function B.
### Let's analyze both functions:
#### Function A
The data points for Function A are:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 3 & 6 & 9 & 12 & 15 \\ \hline y & 9 & 36 & 81 & 144 & 225 \\ \hline \end{array} \][/tex]
To check if [tex]\( y \)[/tex] is a linear function of [tex]\( x \)[/tex], we look at the differences in [tex]\( y \)[/tex] for equal changes in [tex]\( x \)[/tex]:
[tex]\[ \begin{aligned} \Delta y_{1} &= y_{2} - y_{1} = 36 - 9 = 27, \quad \Delta x_{1} = x_{2} - x_{1} = 6 - 3 = 3, \quad \text{slope} = \frac{\Delta y_{1}}{\Delta x_{1}} = \frac{27}{3} = 9\\ \Delta y_{2} &= y_{3} - y_{2} = 81 - 36 = 45, \quad \Delta x_{2} = x_{3} - x_{2} = 9 - 6 = 3, \quad \text{slope} = \frac{\Delta y_{2}}{\Delta x_{2}} = \frac{45}{3} = 15\\ \Delta y_{3} &= y_{4} - y_{3} = 144 - 81 = 63, \quad \Delta x_{3} = x_{4} - x_{3} = 12 - 9 = 3, \quad \text{slope} = \frac{\Delta y_{3}}{\Delta x_{3}} = \frac{63}{3} = 21\\ \Delta y_{4} &= y_{5} - y_{4} = 225 - 144 = 81, \quad \Delta x_{4} = x_{5} - x_{4} = 15 - 12 = 3, \quad \text{slope} = \frac{\Delta y_{4}}{\Delta x_{4}} = \frac{81}{3} = 27 \end{aligned} \][/tex]
Since the slopes are not constant, Function A is not linear.
#### Function B
The data points for Function B are:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 5 & 10 & 15 & 20 & 25 \\ \hline y & 8 & 16 & 24 & 32 & 40 \\ \hline \end{array} \][/tex]
To check if [tex]\( y \)[/tex] is a linear function of [tex]\( x \)[/tex], we look at the differences in [tex]\( y \)[/tex] for equal changes in [tex]\( x \)[/tex]:
[tex]\[ \begin{aligned} \Delta y_{1} &= y_{2} - y_{1} = 16 - 8 = 8, \quad \Delta x_{1} = x_{2} - x_{1} = 10 - 5 = 5, \quad \text{slope} = \frac{\Delta y_{1}}{\Delta x_{1}} = \frac{8}{5} = \frac{8}{5}\\ \Delta y_{2} &= y_{3} - y_{2} = 24 - 16 = 8, \quad \Delta x_{2} = x_{3} - x_{2} = 15 - 10 = 5, \quad \text{slope} = \frac{\Delta y_{2}}{\Delta x_{2}} = \frac{8}{5}\\ \Delta y_{3} &= y_{4} - y_{3} = 32 - 24 = 8, \quad \Delta x_{3} = x_{4} - x_{3} = 20 - 15 = 5, \quad \text{slope} = \frac{\Delta y_{3}}{\Delta x_{3}} = \frac{8}{5}\\ \Delta y_{4} &= y_{5} - y_{4} = 40 - 32 = 8, \quad \Delta x_{4} = x_{5} - x_{4} = 25 - 20 = 5, \quad \text{slope} = \frac{\Delta y_{4}}{\Delta x_{4}} = \frac{8}{5} \end{aligned} \][/tex]
Since the slopes are constant, Function B is linear.
### Conclusion
From our analysis, only Function B has a constant rate of change and is therefore linear. The answer is B) Function B.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.