Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine whether a function is linear, we need to check if the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] varies proportionally, leading to a constant rate of change (slope).
### Let's analyze both functions:
#### Function A
The data points for Function A are:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 3 & 6 & 9 & 12 & 15 \\ \hline y & 9 & 36 & 81 & 144 & 225 \\ \hline \end{array} \][/tex]
To check if [tex]\( y \)[/tex] is a linear function of [tex]\( x \)[/tex], we look at the differences in [tex]\( y \)[/tex] for equal changes in [tex]\( x \)[/tex]:
[tex]\[ \begin{aligned} \Delta y_{1} &= y_{2} - y_{1} = 36 - 9 = 27, \quad \Delta x_{1} = x_{2} - x_{1} = 6 - 3 = 3, \quad \text{slope} = \frac{\Delta y_{1}}{\Delta x_{1}} = \frac{27}{3} = 9\\ \Delta y_{2} &= y_{3} - y_{2} = 81 - 36 = 45, \quad \Delta x_{2} = x_{3} - x_{2} = 9 - 6 = 3, \quad \text{slope} = \frac{\Delta y_{2}}{\Delta x_{2}} = \frac{45}{3} = 15\\ \Delta y_{3} &= y_{4} - y_{3} = 144 - 81 = 63, \quad \Delta x_{3} = x_{4} - x_{3} = 12 - 9 = 3, \quad \text{slope} = \frac{\Delta y_{3}}{\Delta x_{3}} = \frac{63}{3} = 21\\ \Delta y_{4} &= y_{5} - y_{4} = 225 - 144 = 81, \quad \Delta x_{4} = x_{5} - x_{4} = 15 - 12 = 3, \quad \text{slope} = \frac{\Delta y_{4}}{\Delta x_{4}} = \frac{81}{3} = 27 \end{aligned} \][/tex]
Since the slopes are not constant, Function A is not linear.
#### Function B
The data points for Function B are:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 5 & 10 & 15 & 20 & 25 \\ \hline y & 8 & 16 & 24 & 32 & 40 \\ \hline \end{array} \][/tex]
To check if [tex]\( y \)[/tex] is a linear function of [tex]\( x \)[/tex], we look at the differences in [tex]\( y \)[/tex] for equal changes in [tex]\( x \)[/tex]:
[tex]\[ \begin{aligned} \Delta y_{1} &= y_{2} - y_{1} = 16 - 8 = 8, \quad \Delta x_{1} = x_{2} - x_{1} = 10 - 5 = 5, \quad \text{slope} = \frac{\Delta y_{1}}{\Delta x_{1}} = \frac{8}{5} = \frac{8}{5}\\ \Delta y_{2} &= y_{3} - y_{2} = 24 - 16 = 8, \quad \Delta x_{2} = x_{3} - x_{2} = 15 - 10 = 5, \quad \text{slope} = \frac{\Delta y_{2}}{\Delta x_{2}} = \frac{8}{5}\\ \Delta y_{3} &= y_{4} - y_{3} = 32 - 24 = 8, \quad \Delta x_{3} = x_{4} - x_{3} = 20 - 15 = 5, \quad \text{slope} = \frac{\Delta y_{3}}{\Delta x_{3}} = \frac{8}{5}\\ \Delta y_{4} &= y_{5} - y_{4} = 40 - 32 = 8, \quad \Delta x_{4} = x_{5} - x_{4} = 25 - 20 = 5, \quad \text{slope} = \frac{\Delta y_{4}}{\Delta x_{4}} = \frac{8}{5} \end{aligned} \][/tex]
Since the slopes are constant, Function B is linear.
### Conclusion
From our analysis, only Function B has a constant rate of change and is therefore linear. The answer is B) Function B.
### Let's analyze both functions:
#### Function A
The data points for Function A are:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 3 & 6 & 9 & 12 & 15 \\ \hline y & 9 & 36 & 81 & 144 & 225 \\ \hline \end{array} \][/tex]
To check if [tex]\( y \)[/tex] is a linear function of [tex]\( x \)[/tex], we look at the differences in [tex]\( y \)[/tex] for equal changes in [tex]\( x \)[/tex]:
[tex]\[ \begin{aligned} \Delta y_{1} &= y_{2} - y_{1} = 36 - 9 = 27, \quad \Delta x_{1} = x_{2} - x_{1} = 6 - 3 = 3, \quad \text{slope} = \frac{\Delta y_{1}}{\Delta x_{1}} = \frac{27}{3} = 9\\ \Delta y_{2} &= y_{3} - y_{2} = 81 - 36 = 45, \quad \Delta x_{2} = x_{3} - x_{2} = 9 - 6 = 3, \quad \text{slope} = \frac{\Delta y_{2}}{\Delta x_{2}} = \frac{45}{3} = 15\\ \Delta y_{3} &= y_{4} - y_{3} = 144 - 81 = 63, \quad \Delta x_{3} = x_{4} - x_{3} = 12 - 9 = 3, \quad \text{slope} = \frac{\Delta y_{3}}{\Delta x_{3}} = \frac{63}{3} = 21\\ \Delta y_{4} &= y_{5} - y_{4} = 225 - 144 = 81, \quad \Delta x_{4} = x_{5} - x_{4} = 15 - 12 = 3, \quad \text{slope} = \frac{\Delta y_{4}}{\Delta x_{4}} = \frac{81}{3} = 27 \end{aligned} \][/tex]
Since the slopes are not constant, Function A is not linear.
#### Function B
The data points for Function B are:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 5 & 10 & 15 & 20 & 25 \\ \hline y & 8 & 16 & 24 & 32 & 40 \\ \hline \end{array} \][/tex]
To check if [tex]\( y \)[/tex] is a linear function of [tex]\( x \)[/tex], we look at the differences in [tex]\( y \)[/tex] for equal changes in [tex]\( x \)[/tex]:
[tex]\[ \begin{aligned} \Delta y_{1} &= y_{2} - y_{1} = 16 - 8 = 8, \quad \Delta x_{1} = x_{2} - x_{1} = 10 - 5 = 5, \quad \text{slope} = \frac{\Delta y_{1}}{\Delta x_{1}} = \frac{8}{5} = \frac{8}{5}\\ \Delta y_{2} &= y_{3} - y_{2} = 24 - 16 = 8, \quad \Delta x_{2} = x_{3} - x_{2} = 15 - 10 = 5, \quad \text{slope} = \frac{\Delta y_{2}}{\Delta x_{2}} = \frac{8}{5}\\ \Delta y_{3} &= y_{4} - y_{3} = 32 - 24 = 8, \quad \Delta x_{3} = x_{4} - x_{3} = 20 - 15 = 5, \quad \text{slope} = \frac{\Delta y_{3}}{\Delta x_{3}} = \frac{8}{5}\\ \Delta y_{4} &= y_{5} - y_{4} = 40 - 32 = 8, \quad \Delta x_{4} = x_{5} - x_{4} = 25 - 20 = 5, \quad \text{slope} = \frac{\Delta y_{4}}{\Delta x_{4}} = \frac{8}{5} \end{aligned} \][/tex]
Since the slopes are constant, Function B is linear.
### Conclusion
From our analysis, only Function B has a constant rate of change and is therefore linear. The answer is B) Function B.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.