Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine whether a function is linear, we need to check if the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] varies proportionally, leading to a constant rate of change (slope).
### Let's analyze both functions:
#### Function A
The data points for Function A are:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 3 & 6 & 9 & 12 & 15 \\ \hline y & 9 & 36 & 81 & 144 & 225 \\ \hline \end{array} \][/tex]
To check if [tex]\( y \)[/tex] is a linear function of [tex]\( x \)[/tex], we look at the differences in [tex]\( y \)[/tex] for equal changes in [tex]\( x \)[/tex]:
[tex]\[ \begin{aligned} \Delta y_{1} &= y_{2} - y_{1} = 36 - 9 = 27, \quad \Delta x_{1} = x_{2} - x_{1} = 6 - 3 = 3, \quad \text{slope} = \frac{\Delta y_{1}}{\Delta x_{1}} = \frac{27}{3} = 9\\ \Delta y_{2} &= y_{3} - y_{2} = 81 - 36 = 45, \quad \Delta x_{2} = x_{3} - x_{2} = 9 - 6 = 3, \quad \text{slope} = \frac{\Delta y_{2}}{\Delta x_{2}} = \frac{45}{3} = 15\\ \Delta y_{3} &= y_{4} - y_{3} = 144 - 81 = 63, \quad \Delta x_{3} = x_{4} - x_{3} = 12 - 9 = 3, \quad \text{slope} = \frac{\Delta y_{3}}{\Delta x_{3}} = \frac{63}{3} = 21\\ \Delta y_{4} &= y_{5} - y_{4} = 225 - 144 = 81, \quad \Delta x_{4} = x_{5} - x_{4} = 15 - 12 = 3, \quad \text{slope} = \frac{\Delta y_{4}}{\Delta x_{4}} = \frac{81}{3} = 27 \end{aligned} \][/tex]
Since the slopes are not constant, Function A is not linear.
#### Function B
The data points for Function B are:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 5 & 10 & 15 & 20 & 25 \\ \hline y & 8 & 16 & 24 & 32 & 40 \\ \hline \end{array} \][/tex]
To check if [tex]\( y \)[/tex] is a linear function of [tex]\( x \)[/tex], we look at the differences in [tex]\( y \)[/tex] for equal changes in [tex]\( x \)[/tex]:
[tex]\[ \begin{aligned} \Delta y_{1} &= y_{2} - y_{1} = 16 - 8 = 8, \quad \Delta x_{1} = x_{2} - x_{1} = 10 - 5 = 5, \quad \text{slope} = \frac{\Delta y_{1}}{\Delta x_{1}} = \frac{8}{5} = \frac{8}{5}\\ \Delta y_{2} &= y_{3} - y_{2} = 24 - 16 = 8, \quad \Delta x_{2} = x_{3} - x_{2} = 15 - 10 = 5, \quad \text{slope} = \frac{\Delta y_{2}}{\Delta x_{2}} = \frac{8}{5}\\ \Delta y_{3} &= y_{4} - y_{3} = 32 - 24 = 8, \quad \Delta x_{3} = x_{4} - x_{3} = 20 - 15 = 5, \quad \text{slope} = \frac{\Delta y_{3}}{\Delta x_{3}} = \frac{8}{5}\\ \Delta y_{4} &= y_{5} - y_{4} = 40 - 32 = 8, \quad \Delta x_{4} = x_{5} - x_{4} = 25 - 20 = 5, \quad \text{slope} = \frac{\Delta y_{4}}{\Delta x_{4}} = \frac{8}{5} \end{aligned} \][/tex]
Since the slopes are constant, Function B is linear.
### Conclusion
From our analysis, only Function B has a constant rate of change and is therefore linear. The answer is B) Function B.
### Let's analyze both functions:
#### Function A
The data points for Function A are:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 3 & 6 & 9 & 12 & 15 \\ \hline y & 9 & 36 & 81 & 144 & 225 \\ \hline \end{array} \][/tex]
To check if [tex]\( y \)[/tex] is a linear function of [tex]\( x \)[/tex], we look at the differences in [tex]\( y \)[/tex] for equal changes in [tex]\( x \)[/tex]:
[tex]\[ \begin{aligned} \Delta y_{1} &= y_{2} - y_{1} = 36 - 9 = 27, \quad \Delta x_{1} = x_{2} - x_{1} = 6 - 3 = 3, \quad \text{slope} = \frac{\Delta y_{1}}{\Delta x_{1}} = \frac{27}{3} = 9\\ \Delta y_{2} &= y_{3} - y_{2} = 81 - 36 = 45, \quad \Delta x_{2} = x_{3} - x_{2} = 9 - 6 = 3, \quad \text{slope} = \frac{\Delta y_{2}}{\Delta x_{2}} = \frac{45}{3} = 15\\ \Delta y_{3} &= y_{4} - y_{3} = 144 - 81 = 63, \quad \Delta x_{3} = x_{4} - x_{3} = 12 - 9 = 3, \quad \text{slope} = \frac{\Delta y_{3}}{\Delta x_{3}} = \frac{63}{3} = 21\\ \Delta y_{4} &= y_{5} - y_{4} = 225 - 144 = 81, \quad \Delta x_{4} = x_{5} - x_{4} = 15 - 12 = 3, \quad \text{slope} = \frac{\Delta y_{4}}{\Delta x_{4}} = \frac{81}{3} = 27 \end{aligned} \][/tex]
Since the slopes are not constant, Function A is not linear.
#### Function B
The data points for Function B are:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 5 & 10 & 15 & 20 & 25 \\ \hline y & 8 & 16 & 24 & 32 & 40 \\ \hline \end{array} \][/tex]
To check if [tex]\( y \)[/tex] is a linear function of [tex]\( x \)[/tex], we look at the differences in [tex]\( y \)[/tex] for equal changes in [tex]\( x \)[/tex]:
[tex]\[ \begin{aligned} \Delta y_{1} &= y_{2} - y_{1} = 16 - 8 = 8, \quad \Delta x_{1} = x_{2} - x_{1} = 10 - 5 = 5, \quad \text{slope} = \frac{\Delta y_{1}}{\Delta x_{1}} = \frac{8}{5} = \frac{8}{5}\\ \Delta y_{2} &= y_{3} - y_{2} = 24 - 16 = 8, \quad \Delta x_{2} = x_{3} - x_{2} = 15 - 10 = 5, \quad \text{slope} = \frac{\Delta y_{2}}{\Delta x_{2}} = \frac{8}{5}\\ \Delta y_{3} &= y_{4} - y_{3} = 32 - 24 = 8, \quad \Delta x_{3} = x_{4} - x_{3} = 20 - 15 = 5, \quad \text{slope} = \frac{\Delta y_{3}}{\Delta x_{3}} = \frac{8}{5}\\ \Delta y_{4} &= y_{5} - y_{4} = 40 - 32 = 8, \quad \Delta x_{4} = x_{5} - x_{4} = 25 - 20 = 5, \quad \text{slope} = \frac{\Delta y_{4}}{\Delta x_{4}} = \frac{8}{5} \end{aligned} \][/tex]
Since the slopes are constant, Function B is linear.
### Conclusion
From our analysis, only Function B has a constant rate of change and is therefore linear. The answer is B) Function B.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.