Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which portfolio has a higher total weighted mean amount of money and by how much, we need to follow these steps:
1. Calculate the Weighted Mean Rate of Return (ROR) for each portfolio:
The weighted mean ROR takes into account the proportion of each investment within the total portfolio and applies the respective ROR.
For Portfolio 1:
[tex]\[ \text{Weighted Mean ROR}_1 = \left( \frac{2300 \times 2.35\% + 3100 \times 1.96\% + 650 \times 10.45\% + 1800 \times (-2.59\%)}{2300 + 3100 + 650 + 1800} \right) \][/tex]
After calculating, we find:
[tex]\[ \text{Weighted Mean ROR}_1 = 0.017339490445859872 \text{ or } 1.7339\% \][/tex]
For Portfolio 2:
[tex]\[ \text{Weighted Mean ROR}_2 = \left( \frac{1575 \times 2.35\% + 2100 \times 1.96\% + 795 \times 10.45\% + 1900 \times (-2.59\%)}{1575 + 2100 + 795 + 1900} \right) \][/tex]
After calculating, we find:
[tex]\[ \text{Weighted Mean ROR}_2 = 0.017588697017268444 \text{ or } 1.7589\% \][/tex]
2. Calculate the total weighted mean amount of money for each portfolio:
To get the total weighted mean amount of money, multiply the total value of each portfolio by its respective weighted mean ROR.
For Portfolio 1:
[tex]\[ \text{Total Value}_1 = 2300 + 3100 + 650 + 1800 = 7850 \][/tex]
[tex]\[ \text{Total Weighted Amount}_1 = 7850 \times 0.017339490445859872 = 136.115 \][/tex]
For Portfolio 2:
[tex]\[ \text{Total Value}_2 = 1575 + 2100 + 795 + 1900 = 6370 \][/tex]
[tex]\[ \text{Total Weighted Amount}_2 = 6370 \times 0.017588697017268444 = 112.040 \][/tex]
3. Determine which portfolio has the higher total weighted mean amount of money and by how much:
Comparing the total weighted amounts:
[tex]\[ \text{Portfolio 1: } 136.115 \][/tex]
[tex]\[ \text{Portfolio 2: } 112.040 \][/tex]
Since 136.115 is greater than 112.040, Portfolio 1 has the higher total weighted mean amount of money. The difference between the weighted amounts of the two portfolios is:
[tex]\[ 136.115 - 112.040 = 24.075 \][/tex]
Thus, Portfolio 1 has the higher total weighted mean amount of money by \$24.08.
1. Calculate the Weighted Mean Rate of Return (ROR) for each portfolio:
The weighted mean ROR takes into account the proportion of each investment within the total portfolio and applies the respective ROR.
For Portfolio 1:
[tex]\[ \text{Weighted Mean ROR}_1 = \left( \frac{2300 \times 2.35\% + 3100 \times 1.96\% + 650 \times 10.45\% + 1800 \times (-2.59\%)}{2300 + 3100 + 650 + 1800} \right) \][/tex]
After calculating, we find:
[tex]\[ \text{Weighted Mean ROR}_1 = 0.017339490445859872 \text{ or } 1.7339\% \][/tex]
For Portfolio 2:
[tex]\[ \text{Weighted Mean ROR}_2 = \left( \frac{1575 \times 2.35\% + 2100 \times 1.96\% + 795 \times 10.45\% + 1900 \times (-2.59\%)}{1575 + 2100 + 795 + 1900} \right) \][/tex]
After calculating, we find:
[tex]\[ \text{Weighted Mean ROR}_2 = 0.017588697017268444 \text{ or } 1.7589\% \][/tex]
2. Calculate the total weighted mean amount of money for each portfolio:
To get the total weighted mean amount of money, multiply the total value of each portfolio by its respective weighted mean ROR.
For Portfolio 1:
[tex]\[ \text{Total Value}_1 = 2300 + 3100 + 650 + 1800 = 7850 \][/tex]
[tex]\[ \text{Total Weighted Amount}_1 = 7850 \times 0.017339490445859872 = 136.115 \][/tex]
For Portfolio 2:
[tex]\[ \text{Total Value}_2 = 1575 + 2100 + 795 + 1900 = 6370 \][/tex]
[tex]\[ \text{Total Weighted Amount}_2 = 6370 \times 0.017588697017268444 = 112.040 \][/tex]
3. Determine which portfolio has the higher total weighted mean amount of money and by how much:
Comparing the total weighted amounts:
[tex]\[ \text{Portfolio 1: } 136.115 \][/tex]
[tex]\[ \text{Portfolio 2: } 112.040 \][/tex]
Since 136.115 is greater than 112.040, Portfolio 1 has the higher total weighted mean amount of money. The difference between the weighted amounts of the two portfolios is:
[tex]\[ 136.115 - 112.040 = 24.075 \][/tex]
Thus, Portfolio 1 has the higher total weighted mean amount of money by \$24.08.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.