Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To simplify the expression [tex]\(\left(-4 x^5 y^{-2}\right)^2\)[/tex], we need to apply the rules of exponents step by step. Here is the detailed process:
1. Apply the power to each factor inside the parentheses:
The expression given is [tex]\(\left(-4 x^5 y^{-2}\right)^2\)[/tex]. According to the power of a product rule [tex]\((ab)^n = a^n \cdot b^n\)[/tex], we can distribute the exponent 2 to each component inside the parentheses:
[tex]\[ \left(-4 x^5 y^{-2}\right)^2 = (-4)^2 \cdot (x^5)^2 \cdot (y^{-2})^2 \][/tex]
2. Simplify each component separately:
- For [tex]\((-4)^2\)[/tex]:
[tex]\[ (-4)^2 = 16 \][/tex]
- For [tex]\((x^5)^2\)[/tex], apply the power of a power rule [tex]\((a^m)^n = a^{mn}\)[/tex]:
[tex]\[ (x^5)^2 = x^{5 \cdot 2} = x^{10} \][/tex]
- For [tex]\((y^{-2})^2\)[/tex], again apply the power of a power rule:
[tex]\[ (y^{-2})^2 = y^{-2 \cdot 2} = y^{-4} \][/tex]
3. Combine the simplified components:
Now, we put all the simplified parts together:
[tex]\[ (-4)^2 \cdot (x^5)^2 \cdot (y^{-2})^2 = 16 \cdot x^{10} \cdot y^{-4} \][/tex]
4. Write the final simplified expression:
The simplified form of the given expression is:
[tex]\[ 16 x^{10} y^{-4} \][/tex]
Alternatively, we can also express [tex]\(y^{-4}\)[/tex] as [tex]\(\frac{1}{y^4}\)[/tex] if preferred:
[tex]\[ 16 x^{10} y^{-4} = \frac{16 x^{10}}{y^4} \][/tex]
Therefore, the simplified expression is:
[tex]\[ 16 x^{10} y^{-4} \][/tex]
1. Apply the power to each factor inside the parentheses:
The expression given is [tex]\(\left(-4 x^5 y^{-2}\right)^2\)[/tex]. According to the power of a product rule [tex]\((ab)^n = a^n \cdot b^n\)[/tex], we can distribute the exponent 2 to each component inside the parentheses:
[tex]\[ \left(-4 x^5 y^{-2}\right)^2 = (-4)^2 \cdot (x^5)^2 \cdot (y^{-2})^2 \][/tex]
2. Simplify each component separately:
- For [tex]\((-4)^2\)[/tex]:
[tex]\[ (-4)^2 = 16 \][/tex]
- For [tex]\((x^5)^2\)[/tex], apply the power of a power rule [tex]\((a^m)^n = a^{mn}\)[/tex]:
[tex]\[ (x^5)^2 = x^{5 \cdot 2} = x^{10} \][/tex]
- For [tex]\((y^{-2})^2\)[/tex], again apply the power of a power rule:
[tex]\[ (y^{-2})^2 = y^{-2 \cdot 2} = y^{-4} \][/tex]
3. Combine the simplified components:
Now, we put all the simplified parts together:
[tex]\[ (-4)^2 \cdot (x^5)^2 \cdot (y^{-2})^2 = 16 \cdot x^{10} \cdot y^{-4} \][/tex]
4. Write the final simplified expression:
The simplified form of the given expression is:
[tex]\[ 16 x^{10} y^{-4} \][/tex]
Alternatively, we can also express [tex]\(y^{-4}\)[/tex] as [tex]\(\frac{1}{y^4}\)[/tex] if preferred:
[tex]\[ 16 x^{10} y^{-4} = \frac{16 x^{10}}{y^4} \][/tex]
Therefore, the simplified expression is:
[tex]\[ 16 x^{10} y^{-4} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.