Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the root of the function [tex]\( f(x) = \frac{1}{x+3} \)[/tex], we need to solve for [tex]\( x \)[/tex] such that [tex]\( f(x) = 0 \)[/tex].
First, let's set the function equal to zero and analyze the equation:
[tex]\[ f(x) = \frac{1}{x+3} = 0 \][/tex]
This means we need to solve:
[tex]\[ \frac{1}{x+3} = 0 \][/tex]
For a fraction to equal zero, its numerator must be zero. However, the numerator in our fraction is a constant 1, and it will never be equal to zero no matter what value [tex]\( x \)[/tex] takes. This fraction [tex]\( \frac{1}{x+3} \)[/tex] is undefined when the denominator is zero:
[tex]\[ x + 3 = 0 \\ x = -3 \][/tex]
At [tex]\( x = -3 \)[/tex], the function is undefined, not zero. Therefore, the function [tex]\( f(x) = \frac{1}{x+3} \)[/tex] does not have any real roots because there is no value of [tex]\( x \)[/tex] that can satisfy the equation [tex]\( \frac{1}{x+3} = 0 \)[/tex].
Given the choices:
A. none
B. [tex]\( x = -3 \)[/tex]
C. [tex]\( x = -2 \)[/tex]
D. [tex]\( x = -4 \)[/tex]
The correct answer is:
A. none
First, let's set the function equal to zero and analyze the equation:
[tex]\[ f(x) = \frac{1}{x+3} = 0 \][/tex]
This means we need to solve:
[tex]\[ \frac{1}{x+3} = 0 \][/tex]
For a fraction to equal zero, its numerator must be zero. However, the numerator in our fraction is a constant 1, and it will never be equal to zero no matter what value [tex]\( x \)[/tex] takes. This fraction [tex]\( \frac{1}{x+3} \)[/tex] is undefined when the denominator is zero:
[tex]\[ x + 3 = 0 \\ x = -3 \][/tex]
At [tex]\( x = -3 \)[/tex], the function is undefined, not zero. Therefore, the function [tex]\( f(x) = \frac{1}{x+3} \)[/tex] does not have any real roots because there is no value of [tex]\( x \)[/tex] that can satisfy the equation [tex]\( \frac{1}{x+3} = 0 \)[/tex].
Given the choices:
A. none
B. [tex]\( x = -3 \)[/tex]
C. [tex]\( x = -2 \)[/tex]
D. [tex]\( x = -4 \)[/tex]
The correct answer is:
A. none
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.