Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Which set of three angles could represent the interior angles of a triangle?

A. [tex]\( 26^{\circ}, 51^{\circ}, 103^{\circ} \)[/tex]
B. [tex]\( 29^{\circ}, 54^{\circ}, 107^{\circ} \)[/tex]
C. [tex]\( 35^{\circ}, 35^{\circ}, 20^{\circ} \)[/tex]
D. [tex]\( 10^{\circ}, 90^{\circ}, 90^{\circ} \)[/tex]

Sagot :

To determine which set of three angles can represent the interior angles of a triangle, we need to know that the sum of the interior angles of any triangle must be [tex]\(180^\circ\)[/tex]. We will calculate the sum for each set of angles provided and check which one sums to [tex]\(180^\circ\)[/tex].

First set of angles: [tex]\(26^\circ\)[/tex], [tex]\(51^\circ\)[/tex], [tex]\(103^\circ\)[/tex]
[tex]\[ 26^\circ + 51^\circ + 103^\circ = 180^\circ \][/tex]
This set sums to [tex]\(180^\circ\)[/tex], so it could represent the interior angles of a triangle.

Second set of angles: [tex]\(29^\circ\)[/tex], [tex]\(54^\circ\)[/tex], [tex]\(107^\circ\)[/tex]
[tex]\[ 29^\circ + 54^\circ + 107^\circ = 190^\circ \][/tex]
This set sums to [tex]\(190^\circ\)[/tex], which is more than [tex]\(180^\circ\)[/tex], so it does not represent the interior angles of a triangle.

Third set of angles: [tex]\(35^\circ\)[/tex], [tex]\(35^\circ\)[/tex], [tex]\(20^\circ\)[/tex]
[tex]\[ 35^\circ + 35^\circ + 20^\circ = 90^\circ \][/tex]
This set sums to [tex]\(90^\circ\)[/tex], which is less than [tex]\(180^\circ\)[/tex], so it does not represent the interior angles of a triangle.

Fourth set of angles: [tex]\(10^\circ\)[/tex], [tex]\(90^\circ\)[/tex], [tex]\(90^\circ\)[/tex]
[tex]\[ 10^\circ + 90^\circ + 90^\circ = 190^\circ \][/tex]
This set sums to [tex]\(190^\circ\)[/tex], which is more than [tex]\(180^\circ\)[/tex], so it does not represent the interior angles of a triangle.

Since only the first set of angles sums to [tex]\(180^\circ\)[/tex], the set of angles that could represent the interior angles of a triangle is:
[tex]\[ 26^\circ, 51^\circ, 103^\circ \][/tex]