Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which set of three angles can represent the interior angles of a triangle, we need to know that the sum of the interior angles of any triangle must be [tex]\(180^\circ\)[/tex]. We will calculate the sum for each set of angles provided and check which one sums to [tex]\(180^\circ\)[/tex].
First set of angles: [tex]\(26^\circ\)[/tex], [tex]\(51^\circ\)[/tex], [tex]\(103^\circ\)[/tex]
[tex]\[ 26^\circ + 51^\circ + 103^\circ = 180^\circ \][/tex]
This set sums to [tex]\(180^\circ\)[/tex], so it could represent the interior angles of a triangle.
Second set of angles: [tex]\(29^\circ\)[/tex], [tex]\(54^\circ\)[/tex], [tex]\(107^\circ\)[/tex]
[tex]\[ 29^\circ + 54^\circ + 107^\circ = 190^\circ \][/tex]
This set sums to [tex]\(190^\circ\)[/tex], which is more than [tex]\(180^\circ\)[/tex], so it does not represent the interior angles of a triangle.
Third set of angles: [tex]\(35^\circ\)[/tex], [tex]\(35^\circ\)[/tex], [tex]\(20^\circ\)[/tex]
[tex]\[ 35^\circ + 35^\circ + 20^\circ = 90^\circ \][/tex]
This set sums to [tex]\(90^\circ\)[/tex], which is less than [tex]\(180^\circ\)[/tex], so it does not represent the interior angles of a triangle.
Fourth set of angles: [tex]\(10^\circ\)[/tex], [tex]\(90^\circ\)[/tex], [tex]\(90^\circ\)[/tex]
[tex]\[ 10^\circ + 90^\circ + 90^\circ = 190^\circ \][/tex]
This set sums to [tex]\(190^\circ\)[/tex], which is more than [tex]\(180^\circ\)[/tex], so it does not represent the interior angles of a triangle.
Since only the first set of angles sums to [tex]\(180^\circ\)[/tex], the set of angles that could represent the interior angles of a triangle is:
[tex]\[ 26^\circ, 51^\circ, 103^\circ \][/tex]
First set of angles: [tex]\(26^\circ\)[/tex], [tex]\(51^\circ\)[/tex], [tex]\(103^\circ\)[/tex]
[tex]\[ 26^\circ + 51^\circ + 103^\circ = 180^\circ \][/tex]
This set sums to [tex]\(180^\circ\)[/tex], so it could represent the interior angles of a triangle.
Second set of angles: [tex]\(29^\circ\)[/tex], [tex]\(54^\circ\)[/tex], [tex]\(107^\circ\)[/tex]
[tex]\[ 29^\circ + 54^\circ + 107^\circ = 190^\circ \][/tex]
This set sums to [tex]\(190^\circ\)[/tex], which is more than [tex]\(180^\circ\)[/tex], so it does not represent the interior angles of a triangle.
Third set of angles: [tex]\(35^\circ\)[/tex], [tex]\(35^\circ\)[/tex], [tex]\(20^\circ\)[/tex]
[tex]\[ 35^\circ + 35^\circ + 20^\circ = 90^\circ \][/tex]
This set sums to [tex]\(90^\circ\)[/tex], which is less than [tex]\(180^\circ\)[/tex], so it does not represent the interior angles of a triangle.
Fourth set of angles: [tex]\(10^\circ\)[/tex], [tex]\(90^\circ\)[/tex], [tex]\(90^\circ\)[/tex]
[tex]\[ 10^\circ + 90^\circ + 90^\circ = 190^\circ \][/tex]
This set sums to [tex]\(190^\circ\)[/tex], which is more than [tex]\(180^\circ\)[/tex], so it does not represent the interior angles of a triangle.
Since only the first set of angles sums to [tex]\(180^\circ\)[/tex], the set of angles that could represent the interior angles of a triangle is:
[tex]\[ 26^\circ, 51^\circ, 103^\circ \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.