Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Use the properties of logarithms to expand [tex]\log \left(x y^3\right)[/tex].

Sagot :

Sure! To expand [tex]\(\log(x y^3)\)[/tex] using properties of logarithms, you can follow these steps:

1. Product Rule of Logarithms:
The product rule states that the logarithm of a product is the sum of the logarithms of the factors. In mathematical form:
[tex]\[ \log(a \cdot b) = \log(a) + \log(b) \][/tex]
So, applying the product rule to [tex]\(\log(x y^3)\)[/tex]:
[tex]\[ \log(x y^3) = \log(x) + \log(y^3) \][/tex]

2. Power Rule of Logarithms:
The power rule states that the logarithm of a number raised to an exponent is the exponent times the logarithm of the base. In mathematical form:
[tex]\[ \log(a^b) = b \cdot \log(a) \][/tex]
So, applying the power rule to [tex]\(\log(y^3)\)[/tex]:
[tex]\[ \log(y^3) = 3 \cdot \log(y) \][/tex]

3. Combine Results:
Now, substitute the result from the power rule back into the expanded form from the product rule:
[tex]\[ \log(x y^3) = \log(x) + 3 \cdot \log(y) \][/tex]

Therefore, the expanded form of [tex]\(\log(x y^3)\)[/tex] is:
[tex]\[ \log(x) + 3 \cdot \log(y) \][/tex]