Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure! To expand [tex]\(\log(x y^3)\)[/tex] using properties of logarithms, you can follow these steps:
1. Product Rule of Logarithms:
The product rule states that the logarithm of a product is the sum of the logarithms of the factors. In mathematical form:
[tex]\[ \log(a \cdot b) = \log(a) + \log(b) \][/tex]
So, applying the product rule to [tex]\(\log(x y^3)\)[/tex]:
[tex]\[ \log(x y^3) = \log(x) + \log(y^3) \][/tex]
2. Power Rule of Logarithms:
The power rule states that the logarithm of a number raised to an exponent is the exponent times the logarithm of the base. In mathematical form:
[tex]\[ \log(a^b) = b \cdot \log(a) \][/tex]
So, applying the power rule to [tex]\(\log(y^3)\)[/tex]:
[tex]\[ \log(y^3) = 3 \cdot \log(y) \][/tex]
3. Combine Results:
Now, substitute the result from the power rule back into the expanded form from the product rule:
[tex]\[ \log(x y^3) = \log(x) + 3 \cdot \log(y) \][/tex]
Therefore, the expanded form of [tex]\(\log(x y^3)\)[/tex] is:
[tex]\[ \log(x) + 3 \cdot \log(y) \][/tex]
1. Product Rule of Logarithms:
The product rule states that the logarithm of a product is the sum of the logarithms of the factors. In mathematical form:
[tex]\[ \log(a \cdot b) = \log(a) + \log(b) \][/tex]
So, applying the product rule to [tex]\(\log(x y^3)\)[/tex]:
[tex]\[ \log(x y^3) = \log(x) + \log(y^3) \][/tex]
2. Power Rule of Logarithms:
The power rule states that the logarithm of a number raised to an exponent is the exponent times the logarithm of the base. In mathematical form:
[tex]\[ \log(a^b) = b \cdot \log(a) \][/tex]
So, applying the power rule to [tex]\(\log(y^3)\)[/tex]:
[tex]\[ \log(y^3) = 3 \cdot \log(y) \][/tex]
3. Combine Results:
Now, substitute the result from the power rule back into the expanded form from the product rule:
[tex]\[ \log(x y^3) = \log(x) + 3 \cdot \log(y) \][/tex]
Therefore, the expanded form of [tex]\(\log(x y^3)\)[/tex] is:
[tex]\[ \log(x) + 3 \cdot \log(y) \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.