Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the equation [tex]\((x + 2)(x - 7) = 3\)[/tex], let's work through it step by step:
1. Expand the Left-Hand Side: First, let's expand the left-hand side of the equation:
[tex]\[ (x + 2)(x - 7) = x^2 - 7x + 2x - 14 = x^2 - 5x - 14 \][/tex]
So, the equation becomes:
[tex]\[ x^2 - 5x - 14 = 3 \][/tex]
2. Move All Terms to One Side: Next, we move all terms to one side to set the equation to zero:
[tex]\[ x^2 - 5x - 14 - 3 = 0 \][/tex]
Simplifying this, we have:
[tex]\[ x^2 - 5x - 17 = 0 \][/tex]
3. Solve the Quadratic Equation: The next step is to solve this quadratic equation [tex]\(x^2 - 5x - 17 = 0\)[/tex] using the quadratic formula, which is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\(a = 1\)[/tex], [tex]\(b = -5\)[/tex], and [tex]\(c = -17\)[/tex]. Plugging these values into the formula, we get:
[tex]\[ x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 1 \cdot (-17)}}{2 \cdot 1} \][/tex]
Simplifying inside the square root:
[tex]\[ x = \frac{5 \pm \sqrt{25 + 68}}{2} = \frac{5 \pm \sqrt{93}}{2} \][/tex]
4. Split into Two Solutions: This gives us two solutions:
[tex]\[ x = \frac{5 - \sqrt{93}}{2} \quad \text{or} \quad x = \frac{5 + \sqrt{93}}{2} \][/tex]
These are the solutions to the equation:
[tex]\[ x = \frac{5 - \sqrt{93}}{2} \quad \text{and} \quad x = \frac{5 + \sqrt{93}}{2} \][/tex]
Therefore, the solutions to the equation [tex]\((x + 2)(x - 7) = 3\)[/tex] are:
[tex]\[ x = \frac{5}{2} - \frac{\sqrt{93}}{2} \quad \text{and} \quad x = \frac{5}{2} + \frac{\sqrt{93}}{2} \][/tex]
1. Expand the Left-Hand Side: First, let's expand the left-hand side of the equation:
[tex]\[ (x + 2)(x - 7) = x^2 - 7x + 2x - 14 = x^2 - 5x - 14 \][/tex]
So, the equation becomes:
[tex]\[ x^2 - 5x - 14 = 3 \][/tex]
2. Move All Terms to One Side: Next, we move all terms to one side to set the equation to zero:
[tex]\[ x^2 - 5x - 14 - 3 = 0 \][/tex]
Simplifying this, we have:
[tex]\[ x^2 - 5x - 17 = 0 \][/tex]
3. Solve the Quadratic Equation: The next step is to solve this quadratic equation [tex]\(x^2 - 5x - 17 = 0\)[/tex] using the quadratic formula, which is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\(a = 1\)[/tex], [tex]\(b = -5\)[/tex], and [tex]\(c = -17\)[/tex]. Plugging these values into the formula, we get:
[tex]\[ x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 1 \cdot (-17)}}{2 \cdot 1} \][/tex]
Simplifying inside the square root:
[tex]\[ x = \frac{5 \pm \sqrt{25 + 68}}{2} = \frac{5 \pm \sqrt{93}}{2} \][/tex]
4. Split into Two Solutions: This gives us two solutions:
[tex]\[ x = \frac{5 - \sqrt{93}}{2} \quad \text{or} \quad x = \frac{5 + \sqrt{93}}{2} \][/tex]
These are the solutions to the equation:
[tex]\[ x = \frac{5 - \sqrt{93}}{2} \quad \text{and} \quad x = \frac{5 + \sqrt{93}}{2} \][/tex]
Therefore, the solutions to the equation [tex]\((x + 2)(x - 7) = 3\)[/tex] are:
[tex]\[ x = \frac{5}{2} - \frac{\sqrt{93}}{2} \quad \text{and} \quad x = \frac{5}{2} + \frac{\sqrt{93}}{2} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.