Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the equation [tex]\((x + 2)(x - 7) = 3\)[/tex], let's work through it step by step:
1. Expand the Left-Hand Side: First, let's expand the left-hand side of the equation:
[tex]\[ (x + 2)(x - 7) = x^2 - 7x + 2x - 14 = x^2 - 5x - 14 \][/tex]
So, the equation becomes:
[tex]\[ x^2 - 5x - 14 = 3 \][/tex]
2. Move All Terms to One Side: Next, we move all terms to one side to set the equation to zero:
[tex]\[ x^2 - 5x - 14 - 3 = 0 \][/tex]
Simplifying this, we have:
[tex]\[ x^2 - 5x - 17 = 0 \][/tex]
3. Solve the Quadratic Equation: The next step is to solve this quadratic equation [tex]\(x^2 - 5x - 17 = 0\)[/tex] using the quadratic formula, which is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\(a = 1\)[/tex], [tex]\(b = -5\)[/tex], and [tex]\(c = -17\)[/tex]. Plugging these values into the formula, we get:
[tex]\[ x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 1 \cdot (-17)}}{2 \cdot 1} \][/tex]
Simplifying inside the square root:
[tex]\[ x = \frac{5 \pm \sqrt{25 + 68}}{2} = \frac{5 \pm \sqrt{93}}{2} \][/tex]
4. Split into Two Solutions: This gives us two solutions:
[tex]\[ x = \frac{5 - \sqrt{93}}{2} \quad \text{or} \quad x = \frac{5 + \sqrt{93}}{2} \][/tex]
These are the solutions to the equation:
[tex]\[ x = \frac{5 - \sqrt{93}}{2} \quad \text{and} \quad x = \frac{5 + \sqrt{93}}{2} \][/tex]
Therefore, the solutions to the equation [tex]\((x + 2)(x - 7) = 3\)[/tex] are:
[tex]\[ x = \frac{5}{2} - \frac{\sqrt{93}}{2} \quad \text{and} \quad x = \frac{5}{2} + \frac{\sqrt{93}}{2} \][/tex]
1. Expand the Left-Hand Side: First, let's expand the left-hand side of the equation:
[tex]\[ (x + 2)(x - 7) = x^2 - 7x + 2x - 14 = x^2 - 5x - 14 \][/tex]
So, the equation becomes:
[tex]\[ x^2 - 5x - 14 = 3 \][/tex]
2. Move All Terms to One Side: Next, we move all terms to one side to set the equation to zero:
[tex]\[ x^2 - 5x - 14 - 3 = 0 \][/tex]
Simplifying this, we have:
[tex]\[ x^2 - 5x - 17 = 0 \][/tex]
3. Solve the Quadratic Equation: The next step is to solve this quadratic equation [tex]\(x^2 - 5x - 17 = 0\)[/tex] using the quadratic formula, which is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\(a = 1\)[/tex], [tex]\(b = -5\)[/tex], and [tex]\(c = -17\)[/tex]. Plugging these values into the formula, we get:
[tex]\[ x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 1 \cdot (-17)}}{2 \cdot 1} \][/tex]
Simplifying inside the square root:
[tex]\[ x = \frac{5 \pm \sqrt{25 + 68}}{2} = \frac{5 \pm \sqrt{93}}{2} \][/tex]
4. Split into Two Solutions: This gives us two solutions:
[tex]\[ x = \frac{5 - \sqrt{93}}{2} \quad \text{or} \quad x = \frac{5 + \sqrt{93}}{2} \][/tex]
These are the solutions to the equation:
[tex]\[ x = \frac{5 - \sqrt{93}}{2} \quad \text{and} \quad x = \frac{5 + \sqrt{93}}{2} \][/tex]
Therefore, the solutions to the equation [tex]\((x + 2)(x - 7) = 3\)[/tex] are:
[tex]\[ x = \frac{5}{2} - \frac{\sqrt{93}}{2} \quad \text{and} \quad x = \frac{5}{2} + \frac{\sqrt{93}}{2} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.