Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure! Let's solve this problem step-by-step:
1. Understand the balanced chemical equation:
The balanced chemical equation for the decomposition of potassium nitrate ([tex]\( KNO_3 \)[/tex]) is:
[tex]\[ 4 \, \text{KNO}_3 (s) \rightarrow 2 \, \text{K}_2\text{O} (s) + 2 \, \text{N}_2 (g) + 5 \, \text{O}_2 (g) \][/tex]
This tells us that 4 moles of [tex]\( KNO_3 \)[/tex] produce 5 moles of [tex]\( O_2 \)[/tex].
2. Given information:
- We need to produce 58 kg of oxygen ([tex]\( O_2 \)[/tex]).
- The molar mass of oxygen ([tex]\( O_2 \)[/tex]) is 32 g/mol.
3. Conversion of mass of oxygen to grams:
Since the given mass is in kilograms, we need to convert it to grams:
[tex]\[ 58 \, \text{kg} = 58 \times 1000 = 58000 \, \text{grams} \][/tex]
4. Calculate moles of [tex]\( O_2 \)[/tex]:
To find out how many moles of [tex]\( O_2 \)[/tex] are produced, we use the molar mass of [tex]\( O_2 \)[/tex]:
[tex]\[ \text{Moles of } O_2 = \frac{\text{mass of } O_2}{\text{molar mass of } O_2} \][/tex]
[tex]\[ \text{Moles of } O_2 = \frac{58000 \, \text{grams}}{32 \, \text{g/mol}} = 1812.5 \, \text{moles} \][/tex]
5. Determine the moles of [tex]\( KNO_3 \)[/tex] needed:
According to the balanced chemical equation, 4 moles of [tex]\( KNO_3 \)[/tex] produce 5 moles of [tex]\( O_2 \)[/tex]. We can set up a ratio to find the moles of [tex]\( KNO_3 \)[/tex] required:
[tex]\[ \frac{4 \, \text{moles of } KNO_3}{5 \, \text{moles of } O_2} = \frac{x \, \text{moles of } KNO_3}{1812.5 \, \text{moles of } O_2} \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = 1812.5 \times \left(\frac{4}{5}\right) = 1450.0 \, \text{moles} \][/tex]
6. Conclusion:
The number of moles of [tex]\( KNO_3 \)[/tex] that must be heated to produce 58 kg of oxygen is:
[tex]\[ 1450.0 \, \text{moles} \][/tex]
1. Understand the balanced chemical equation:
The balanced chemical equation for the decomposition of potassium nitrate ([tex]\( KNO_3 \)[/tex]) is:
[tex]\[ 4 \, \text{KNO}_3 (s) \rightarrow 2 \, \text{K}_2\text{O} (s) + 2 \, \text{N}_2 (g) + 5 \, \text{O}_2 (g) \][/tex]
This tells us that 4 moles of [tex]\( KNO_3 \)[/tex] produce 5 moles of [tex]\( O_2 \)[/tex].
2. Given information:
- We need to produce 58 kg of oxygen ([tex]\( O_2 \)[/tex]).
- The molar mass of oxygen ([tex]\( O_2 \)[/tex]) is 32 g/mol.
3. Conversion of mass of oxygen to grams:
Since the given mass is in kilograms, we need to convert it to grams:
[tex]\[ 58 \, \text{kg} = 58 \times 1000 = 58000 \, \text{grams} \][/tex]
4. Calculate moles of [tex]\( O_2 \)[/tex]:
To find out how many moles of [tex]\( O_2 \)[/tex] are produced, we use the molar mass of [tex]\( O_2 \)[/tex]:
[tex]\[ \text{Moles of } O_2 = \frac{\text{mass of } O_2}{\text{molar mass of } O_2} \][/tex]
[tex]\[ \text{Moles of } O_2 = \frac{58000 \, \text{grams}}{32 \, \text{g/mol}} = 1812.5 \, \text{moles} \][/tex]
5. Determine the moles of [tex]\( KNO_3 \)[/tex] needed:
According to the balanced chemical equation, 4 moles of [tex]\( KNO_3 \)[/tex] produce 5 moles of [tex]\( O_2 \)[/tex]. We can set up a ratio to find the moles of [tex]\( KNO_3 \)[/tex] required:
[tex]\[ \frac{4 \, \text{moles of } KNO_3}{5 \, \text{moles of } O_2} = \frac{x \, \text{moles of } KNO_3}{1812.5 \, \text{moles of } O_2} \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = 1812.5 \times \left(\frac{4}{5}\right) = 1450.0 \, \text{moles} \][/tex]
6. Conclusion:
The number of moles of [tex]\( KNO_3 \)[/tex] that must be heated to produce 58 kg of oxygen is:
[tex]\[ 1450.0 \, \text{moles} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.