Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

1. Find the slope of line segment [tex]\( DC \)[/tex].

[tex]\[ -\frac{2}{5} \][/tex]


Sagot :

To find the slope of line segment [tex]\(DC\)[/tex], we need to examine the relationship between the coordinates of points D and C.

1. Identify Coordinates:
Assume points [tex]\(D\)[/tex] and [tex]\(C\)[/tex] lie on the cartesian plane with coordinates [tex]\(D(x_1, y_1)\)[/tex] and [tex]\(C(x_2, y_2)\)[/tex], respectively.

2. Formula for Slope:
The formula for the slope [tex]\(m\)[/tex] of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

3. Given Slope:
We need to verify the slope of [tex]\(DC\)[/tex]. Given that the slope [tex]\(m\)[/tex] of [tex]\(DC\)[/tex] is [tex]\(-\frac{2}{5}\)[/tex], this means that:
[tex]\[ m = -\frac{2}{5} \][/tex]

4. Interpretation of Slope:
The slope of [tex]\(-\frac{2}{5}\)[/tex] suggests that for every 5 units of horizontal change (in the [tex]\(x\)[/tex]-direction), the vertical change (in the [tex]\(y\)[/tex]-direction) is [tex]\(-2\)[/tex] units. This means that the line segment [tex]\(DC\)[/tex] is decreasing as you move from left to right.

Therefore, the slope of line segment [tex]\(DC\)[/tex] is [tex]\(-0.4\)[/tex].