Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the slope of line segment [tex]\(DC\)[/tex], we need to examine the relationship between the coordinates of points D and C.
1. Identify Coordinates:
Assume points [tex]\(D\)[/tex] and [tex]\(C\)[/tex] lie on the cartesian plane with coordinates [tex]\(D(x_1, y_1)\)[/tex] and [tex]\(C(x_2, y_2)\)[/tex], respectively.
2. Formula for Slope:
The formula for the slope [tex]\(m\)[/tex] of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
3. Given Slope:
We need to verify the slope of [tex]\(DC\)[/tex]. Given that the slope [tex]\(m\)[/tex] of [tex]\(DC\)[/tex] is [tex]\(-\frac{2}{5}\)[/tex], this means that:
[tex]\[ m = -\frac{2}{5} \][/tex]
4. Interpretation of Slope:
The slope of [tex]\(-\frac{2}{5}\)[/tex] suggests that for every 5 units of horizontal change (in the [tex]\(x\)[/tex]-direction), the vertical change (in the [tex]\(y\)[/tex]-direction) is [tex]\(-2\)[/tex] units. This means that the line segment [tex]\(DC\)[/tex] is decreasing as you move from left to right.
Therefore, the slope of line segment [tex]\(DC\)[/tex] is [tex]\(-0.4\)[/tex].
1. Identify Coordinates:
Assume points [tex]\(D\)[/tex] and [tex]\(C\)[/tex] lie on the cartesian plane with coordinates [tex]\(D(x_1, y_1)\)[/tex] and [tex]\(C(x_2, y_2)\)[/tex], respectively.
2. Formula for Slope:
The formula for the slope [tex]\(m\)[/tex] of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
3. Given Slope:
We need to verify the slope of [tex]\(DC\)[/tex]. Given that the slope [tex]\(m\)[/tex] of [tex]\(DC\)[/tex] is [tex]\(-\frac{2}{5}\)[/tex], this means that:
[tex]\[ m = -\frac{2}{5} \][/tex]
4. Interpretation of Slope:
The slope of [tex]\(-\frac{2}{5}\)[/tex] suggests that for every 5 units of horizontal change (in the [tex]\(x\)[/tex]-direction), the vertical change (in the [tex]\(y\)[/tex]-direction) is [tex]\(-2\)[/tex] units. This means that the line segment [tex]\(DC\)[/tex] is decreasing as you move from left to right.
Therefore, the slope of line segment [tex]\(DC\)[/tex] is [tex]\(-0.4\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.