Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the problem of reflecting point [tex]\( A \)[/tex] with coordinates [tex]\((-4, 3)\)[/tex] in the line [tex]\( y = 2 \)[/tex], let's proceed with the following steps:
1. Identify the horizontal line of reflection [tex]\( y = 2 \)[/tex]:
The line [tex]\( y = 2 \)[/tex] is a horizontal line, which means it runs parallel to the x-axis at [tex]\( y = 2 \)[/tex].
2. Determine the vertical distance from point [tex]\( A \)[/tex] to the line [tex]\( y = 2 \)[/tex]:
Since point [tex]\( A \)[/tex] has coordinates [tex]\((-4, 3)\)[/tex] and the line of reflection is at [tex]\( y = 2 \)[/tex], we calculate the vertical distance as follows:
[tex]\[ \text{Distance to line} = 3 - 2 = 1 \][/tex]
3. Reflect point [tex]\( A \)[/tex] over the line [tex]\( y = 2 \)[/tex]:
To reflect point [tex]\( A \)[/tex], we need to take the distance to the line and subtract it twice from the original y-coordinate of point [tex]\( A \)[/tex]. The reflection formula in this context is:
[tex]\[ \text{Reflected y-coordinate} = 3 - 2 \times 1 = 3 - 2 = 1 \][/tex]
4. Determine the coordinates of the reflected point:
The x-coordinate remains unchanged during a reflection over a horizontal line. Therefore, the new coordinates of the reflected point are:
[tex]\[ (\text{Reflected x-coordinate}, \text{Reflected y-coordinate}) = (-4, 1) \][/tex]
Thus, the coordinates of the image of point [tex]\( A \)[/tex] after reflection in the line [tex]\( y = 2 \)[/tex] are:
[tex]\[(-4, 1)\][/tex]
1. Identify the horizontal line of reflection [tex]\( y = 2 \)[/tex]:
The line [tex]\( y = 2 \)[/tex] is a horizontal line, which means it runs parallel to the x-axis at [tex]\( y = 2 \)[/tex].
2. Determine the vertical distance from point [tex]\( A \)[/tex] to the line [tex]\( y = 2 \)[/tex]:
Since point [tex]\( A \)[/tex] has coordinates [tex]\((-4, 3)\)[/tex] and the line of reflection is at [tex]\( y = 2 \)[/tex], we calculate the vertical distance as follows:
[tex]\[ \text{Distance to line} = 3 - 2 = 1 \][/tex]
3. Reflect point [tex]\( A \)[/tex] over the line [tex]\( y = 2 \)[/tex]:
To reflect point [tex]\( A \)[/tex], we need to take the distance to the line and subtract it twice from the original y-coordinate of point [tex]\( A \)[/tex]. The reflection formula in this context is:
[tex]\[ \text{Reflected y-coordinate} = 3 - 2 \times 1 = 3 - 2 = 1 \][/tex]
4. Determine the coordinates of the reflected point:
The x-coordinate remains unchanged during a reflection over a horizontal line. Therefore, the new coordinates of the reflected point are:
[tex]\[ (\text{Reflected x-coordinate}, \text{Reflected y-coordinate}) = (-4, 1) \][/tex]
Thus, the coordinates of the image of point [tex]\( A \)[/tex] after reflection in the line [tex]\( y = 2 \)[/tex] are:
[tex]\[(-4, 1)\][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.