Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Use the product property of logarithms to write the logarithm as a sum of logarithms.

[tex]\[ \log_7[(x + y) \cdot z] = \][/tex]

[tex]\[ \log_7(x + y) + \log_7(z) \][/tex]


Sagot :

Certainly! Let's tackle the problem step-by-step to convert the given logarithm into the sum of logarithms using the product property.

Given:
[tex]\[ \log_7[(x + y) \cdot z] \][/tex]

We need to express this logarithm as a sum of simpler logarithms. We'll use the product property of logarithms, which states:
[tex]\[ \log_b(M \cdot N) = \log_b(M) + \log_b(N) \][/tex]

Here, [tex]\( b = 7 \)[/tex], [tex]\( M = x + y \)[/tex], and [tex]\( N = z \)[/tex].

Applying the product property, we get:
[tex]\[ \log_7[(x + y) \cdot z] = \log_7(x + y) + \log_7(z) \][/tex]

Therefore, the logarithm expressed as a sum of logarithms is:
[tex]\[ \boxed{\log_7[(x + y) \cdot z] = \log_7(x + y) + \log_7(z)} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.