Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Alright, let's break down the given quadratic expression step-by-step.
We are given the quadratic expression [tex]\( 4x^2 + 4x + 1 \)[/tex].
### Step 1: Identify the Coefficients
In a quadratic expression of the form [tex]\( ax^2 + bx + c \)[/tex]:
- [tex]\( a \)[/tex] is the coefficient of [tex]\( x^2 \)[/tex],
- [tex]\( b \)[/tex] is the coefficient of [tex]\( x \)[/tex],
- [tex]\( c \)[/tex] is the constant term.
For our expression [tex]\( 4x^2 + 4x + 1 \)[/tex]:
- [tex]\( a = 4 \)[/tex],
- [tex]\( b = 4 \)[/tex],
- [tex]\( c = 1 \)[/tex].
### Step 2: Verify the Standard Form
Our quadratic expression is already in standard form: [tex]\( ax^2 + bx + c \)[/tex].
### Step 3: Checking For Any Special Forms
Here, we should check if the given quadratic expression can be simplified further or factored into simpler forms.
#### Step 3.1: Expand (if Necessary)
The expression is already expanded as [tex]\( 4x^2 + 4x + 1 \)[/tex], which means it's written in its standard quadratic form.
#### Step 3.2: Factorization (If Possible)
We check if the expression can be factored. Let’s consider the expression:
[tex]\[ 4x^2 + 4x + 1 \][/tex]
To factorize this quadratic expression, we can start by checking if it's a perfect square trinomial.
A perfect square trinomial takes the form [tex]\( (ux + v)^2 = u^2x^2 + 2uvx + v^2 \)[/tex].
We see that:
[tex]\[ (2x + 1)^2 = (2x + 1)(2x + 1) = 4x^2 + 4x + 1 \][/tex]
Thus, [tex]\( 4x^2 + 4x + 1 \)[/tex] can be written as:
[tex]\[ 4x^2 + 4x + 1 = (2x + 1)^2 \][/tex]
### Step 4: Conclusions
We verified that:
[tex]\[ 4x^2 + 4x + 1 \][/tex]
is, in fact, a perfect square trinomial and can be written as:
[tex]\[ (2x + 1)^2 \][/tex]
So, the detailed analysis confirms that the quadratic expression [tex]\( 4x^2 + 4x + 1 \)[/tex] is correct and has been confirmed in its expanded form as well as its factored form.
We are given the quadratic expression [tex]\( 4x^2 + 4x + 1 \)[/tex].
### Step 1: Identify the Coefficients
In a quadratic expression of the form [tex]\( ax^2 + bx + c \)[/tex]:
- [tex]\( a \)[/tex] is the coefficient of [tex]\( x^2 \)[/tex],
- [tex]\( b \)[/tex] is the coefficient of [tex]\( x \)[/tex],
- [tex]\( c \)[/tex] is the constant term.
For our expression [tex]\( 4x^2 + 4x + 1 \)[/tex]:
- [tex]\( a = 4 \)[/tex],
- [tex]\( b = 4 \)[/tex],
- [tex]\( c = 1 \)[/tex].
### Step 2: Verify the Standard Form
Our quadratic expression is already in standard form: [tex]\( ax^2 + bx + c \)[/tex].
### Step 3: Checking For Any Special Forms
Here, we should check if the given quadratic expression can be simplified further or factored into simpler forms.
#### Step 3.1: Expand (if Necessary)
The expression is already expanded as [tex]\( 4x^2 + 4x + 1 \)[/tex], which means it's written in its standard quadratic form.
#### Step 3.2: Factorization (If Possible)
We check if the expression can be factored. Let’s consider the expression:
[tex]\[ 4x^2 + 4x + 1 \][/tex]
To factorize this quadratic expression, we can start by checking if it's a perfect square trinomial.
A perfect square trinomial takes the form [tex]\( (ux + v)^2 = u^2x^2 + 2uvx + v^2 \)[/tex].
We see that:
[tex]\[ (2x + 1)^2 = (2x + 1)(2x + 1) = 4x^2 + 4x + 1 \][/tex]
Thus, [tex]\( 4x^2 + 4x + 1 \)[/tex] can be written as:
[tex]\[ 4x^2 + 4x + 1 = (2x + 1)^2 \][/tex]
### Step 4: Conclusions
We verified that:
[tex]\[ 4x^2 + 4x + 1 \][/tex]
is, in fact, a perfect square trinomial and can be written as:
[tex]\[ (2x + 1)^2 \][/tex]
So, the detailed analysis confirms that the quadratic expression [tex]\( 4x^2 + 4x + 1 \)[/tex] is correct and has been confirmed in its expanded form as well as its factored form.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.