Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's analyze each subset requested for the given set [tex]\( A = \{2, 4, 6, 8, 10, 12\} \)[/tex]. We'll identify the elements that belong to each subset step by step.
### (a) [tex]\( Q \)[/tex] - Set of odd numbers in [tex]\( A \)[/tex]
Odd numbers are those numbers that are not divisible by 2. Let's check each element in [tex]\( A \)[/tex]:
- 2 is not odd
- 4 is not odd
- 6 is not odd
- 8 is not odd
- 10 is not odd
- 12 is not odd
Hence, there are no odd numbers in [tex]\( A \)[/tex]. Thus,
[tex]\[ Q = \emptyset \][/tex]
### (b) [tex]\( P \)[/tex] - Set of prime numbers in [tex]\( A \)[/tex]
Prime numbers are those numbers greater than 1 that are divisible only by 1 and themselves. Let's check each element in [tex]\( A \)[/tex]:
- 2 is prime (divisible by 1 and 2)
- 4 is not prime (divisible by 1, 2, and 4)
- 6 is not prime (divisible by 1, 2, 3, and 6)
- 8 is not prime (divisible by 1, 2, 4, and 8)
- 10 is not prime (divisible by 1, 2, 5, and 10)
- 12 is not prime (divisible by 1, 2, 3, 4, 6, and 12)
Hence, we only have one prime number:
[tex]\[ P = \{2\} \][/tex]
### (c) [tex]\( C \)[/tex] - Set of composite numbers in [tex]\( A \)[/tex]
Composite numbers are those numbers greater than 1 that are not prime (i.e., they have divisors other than 1 and themselves). Let's check each element in [tex]\( A \)[/tex]:
- 2 is not composite (it’s prime)
- 4 is composite
- 6 is composite
- 8 is composite
- 10 is composite
- 12 is composite
Therefore, the composite numbers in [tex]\( A \)[/tex] are:
[tex]\[ C = \{4, 6, 8, 10, 12\} \][/tex]
### (d) [tex]\( F_{12} \)[/tex] - Set of factors of 12 in [tex]\( A \)[/tex]
Factors of 12 are the numbers that divide 12 without leaving a remainder. The factors of 12 are 1, 2, 3, 4, and 6. Let's check which of these factors are in [tex]\( A \)[/tex]:
- 2 is a factor of 12
- 4 is a factor of 12
- 6 is a factor of 12
- 8 is not a factor of 12
- 10 is not a factor of 12
- 12 is a factor of 12
Hence, the factors of 12 in [tex]\( A \)[/tex] are:
[tex]\[ F_{12} = \{2, 4, 6, 12\} \][/tex]
### (e) [tex]\( M_2 \)[/tex] - Set of multiples of 2 in [tex]\( A \)[/tex]
Multiples of 2 are those numbers that are divisible by 2. Let's identify the multiples of 2 in [tex]\( A \)[/tex]:
- 2 is a multiple of 2
- 4 is a multiple of 2
- 6 is a multiple of 2
- 8 is a multiple of 2
- 10 is a multiple of 2
- 12 is a multiple of 2
Therefore, all numbers in [tex]\( A \)[/tex] are multiples of 2:
[tex]\[ M_2 = \{2, 4, 6, 8, 10, 12\} \][/tex]
### (f) [tex]\( M_{15} \)[/tex] - Set of multiples of 15 in [tex]\( A \)[/tex]
Multiples of 15 are those numbers that are divisible by 15. Let's check if any element in [tex]\( A \)[/tex] is a multiple of 15:
- 2 is not a multiple of 15
- 4 is not a multiple of 15
- 6 is not a multiple of 15
- 8 is not a multiple of 15
- 10 is not a multiple of 15
- 12 is not a multiple of 15
Hence, there are no multiples of 15 in [tex]\( A \)[/tex]:
[tex]\[ M_{15} = \emptyset \][/tex]
Summarizing the results:
[tex]\[ Q = \emptyset \][/tex]
[tex]\[ P = \{2\} \][/tex]
[tex]\[ C = \{4, 6, 8, 10, 12\} \][/tex]
[tex]\[ F_{12} = \{2, 4, 6, 12\} \][/tex]
[tex]\[ M_2 = \{2, 4, 6, 8, 10, 12\} \][/tex]
[tex]\[ M_{15} = \emptyset \][/tex]
### (a) [tex]\( Q \)[/tex] - Set of odd numbers in [tex]\( A \)[/tex]
Odd numbers are those numbers that are not divisible by 2. Let's check each element in [tex]\( A \)[/tex]:
- 2 is not odd
- 4 is not odd
- 6 is not odd
- 8 is not odd
- 10 is not odd
- 12 is not odd
Hence, there are no odd numbers in [tex]\( A \)[/tex]. Thus,
[tex]\[ Q = \emptyset \][/tex]
### (b) [tex]\( P \)[/tex] - Set of prime numbers in [tex]\( A \)[/tex]
Prime numbers are those numbers greater than 1 that are divisible only by 1 and themselves. Let's check each element in [tex]\( A \)[/tex]:
- 2 is prime (divisible by 1 and 2)
- 4 is not prime (divisible by 1, 2, and 4)
- 6 is not prime (divisible by 1, 2, 3, and 6)
- 8 is not prime (divisible by 1, 2, 4, and 8)
- 10 is not prime (divisible by 1, 2, 5, and 10)
- 12 is not prime (divisible by 1, 2, 3, 4, 6, and 12)
Hence, we only have one prime number:
[tex]\[ P = \{2\} \][/tex]
### (c) [tex]\( C \)[/tex] - Set of composite numbers in [tex]\( A \)[/tex]
Composite numbers are those numbers greater than 1 that are not prime (i.e., they have divisors other than 1 and themselves). Let's check each element in [tex]\( A \)[/tex]:
- 2 is not composite (it’s prime)
- 4 is composite
- 6 is composite
- 8 is composite
- 10 is composite
- 12 is composite
Therefore, the composite numbers in [tex]\( A \)[/tex] are:
[tex]\[ C = \{4, 6, 8, 10, 12\} \][/tex]
### (d) [tex]\( F_{12} \)[/tex] - Set of factors of 12 in [tex]\( A \)[/tex]
Factors of 12 are the numbers that divide 12 without leaving a remainder. The factors of 12 are 1, 2, 3, 4, and 6. Let's check which of these factors are in [tex]\( A \)[/tex]:
- 2 is a factor of 12
- 4 is a factor of 12
- 6 is a factor of 12
- 8 is not a factor of 12
- 10 is not a factor of 12
- 12 is a factor of 12
Hence, the factors of 12 in [tex]\( A \)[/tex] are:
[tex]\[ F_{12} = \{2, 4, 6, 12\} \][/tex]
### (e) [tex]\( M_2 \)[/tex] - Set of multiples of 2 in [tex]\( A \)[/tex]
Multiples of 2 are those numbers that are divisible by 2. Let's identify the multiples of 2 in [tex]\( A \)[/tex]:
- 2 is a multiple of 2
- 4 is a multiple of 2
- 6 is a multiple of 2
- 8 is a multiple of 2
- 10 is a multiple of 2
- 12 is a multiple of 2
Therefore, all numbers in [tex]\( A \)[/tex] are multiples of 2:
[tex]\[ M_2 = \{2, 4, 6, 8, 10, 12\} \][/tex]
### (f) [tex]\( M_{15} \)[/tex] - Set of multiples of 15 in [tex]\( A \)[/tex]
Multiples of 15 are those numbers that are divisible by 15. Let's check if any element in [tex]\( A \)[/tex] is a multiple of 15:
- 2 is not a multiple of 15
- 4 is not a multiple of 15
- 6 is not a multiple of 15
- 8 is not a multiple of 15
- 10 is not a multiple of 15
- 12 is not a multiple of 15
Hence, there are no multiples of 15 in [tex]\( A \)[/tex]:
[tex]\[ M_{15} = \emptyset \][/tex]
Summarizing the results:
[tex]\[ Q = \emptyset \][/tex]
[tex]\[ P = \{2\} \][/tex]
[tex]\[ C = \{4, 6, 8, 10, 12\} \][/tex]
[tex]\[ F_{12} = \{2, 4, 6, 12\} \][/tex]
[tex]\[ M_2 = \{2, 4, 6, 8, 10, 12\} \][/tex]
[tex]\[ M_{15} = \emptyset \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.