Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine whether the statement is true or false, let's first review the concept of the area of a sector.
A circle has an area which can be calculated using the formula:
[tex]\[ \text{Area of a circle} = \pi r^2 \][/tex]
where [tex]\( r \)[/tex] is the radius of the circle.
A sector of a circle is a portion of the circle defined by two radii and the included arc. The area of a sector is a fraction of the total area of the circle. This fraction is determined by the central angle [tex]\( \theta \)[/tex] (in degrees) of the sector relative to the total 360 degrees of the circle.
The formula to find the area of a sector is:
[tex]\[ \text{Area of a sector} = \frac{\theta}{360} \times \pi r^2 \][/tex]
This shows that the area of the sector is indeed the product of the area of the circle and the fraction [tex]\(\frac{\theta}{360}\)[/tex], which represents the part of the circle covered by the sector.
Given the explanation, we see that the statement is correct.
The area of a sector is the area of the circle multiplied by the fraction of the circle covered by that sector.
Therefore, the correct answer is:
A. True
A circle has an area which can be calculated using the formula:
[tex]\[ \text{Area of a circle} = \pi r^2 \][/tex]
where [tex]\( r \)[/tex] is the radius of the circle.
A sector of a circle is a portion of the circle defined by two radii and the included arc. The area of a sector is a fraction of the total area of the circle. This fraction is determined by the central angle [tex]\( \theta \)[/tex] (in degrees) of the sector relative to the total 360 degrees of the circle.
The formula to find the area of a sector is:
[tex]\[ \text{Area of a sector} = \frac{\theta}{360} \times \pi r^2 \][/tex]
This shows that the area of the sector is indeed the product of the area of the circle and the fraction [tex]\(\frac{\theta}{360}\)[/tex], which represents the part of the circle covered by the sector.
Given the explanation, we see that the statement is correct.
The area of a sector is the area of the circle multiplied by the fraction of the circle covered by that sector.
Therefore, the correct answer is:
A. True
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.