Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To tackle the problem of factoring the polynomial [tex]\(x^2 - x + 7\)[/tex], let's examine it in detail.
Consider the quadratic polynomial [tex]\(x^2 - x + 7\)[/tex]. To factor this polynomial, we typically look for two binomials [tex]\((x - a)(x - b)\)[/tex] whose product equals the given polynomial. To do this, the coefficients and constants will need to match the original polynomial once expanded.
1. Identify Possible Factor Pairs: Let's assume it can be factored into [tex]\((x - a)(x - b)\)[/tex].
2. Expand the Binomials: By expanding [tex]\((x - a)(x - b)\)[/tex], we get:
[tex]\[ (x - a)(x - b) = x^2 - (a + b)x + ab \][/tex]
In this case, we need:
- The sum of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] to equal -1 (since the coefficient of [tex]\(x\)[/tex] is -1).
- The product of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] to equal 7, the constant term.
3. Solve the System of Equations:
- We need [tex]\(a + b = 1\)[/tex]
- We need [tex]\(ab = 7\)[/tex]
Let's find pairs [tex]\((a, b)\)[/tex] that satisfy these conditions adequately:
- The pairs [tex]\((a, b)\)[/tex] that multiply to 7 could be [tex]\((1, 7)\)[/tex], [tex]\((-1, -7)\)[/tex], [tex]\((\sqrt{7}, -\sqrt{7})\)[/tex], etc.
- None of these pairs will simultaneously sum up to -1.
4. Conclusion:
After analyzing the polynomial, it becomes apparent that there are no pairs of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] consisting of real numbers that satisfy both conditions [tex]\(a + b = 1\)[/tex] and [tex]\(ab = 7\)[/tex]. As a result:
Therefore, the polynomial [tex]\(x^2 - x + 7\)[/tex] cannot be factored into simpler binomials with real coefficients. Hence, the correct answer is:
- Cannot be factored
Consider the quadratic polynomial [tex]\(x^2 - x + 7\)[/tex]. To factor this polynomial, we typically look for two binomials [tex]\((x - a)(x - b)\)[/tex] whose product equals the given polynomial. To do this, the coefficients and constants will need to match the original polynomial once expanded.
1. Identify Possible Factor Pairs: Let's assume it can be factored into [tex]\((x - a)(x - b)\)[/tex].
2. Expand the Binomials: By expanding [tex]\((x - a)(x - b)\)[/tex], we get:
[tex]\[ (x - a)(x - b) = x^2 - (a + b)x + ab \][/tex]
In this case, we need:
- The sum of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] to equal -1 (since the coefficient of [tex]\(x\)[/tex] is -1).
- The product of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] to equal 7, the constant term.
3. Solve the System of Equations:
- We need [tex]\(a + b = 1\)[/tex]
- We need [tex]\(ab = 7\)[/tex]
Let's find pairs [tex]\((a, b)\)[/tex] that satisfy these conditions adequately:
- The pairs [tex]\((a, b)\)[/tex] that multiply to 7 could be [tex]\((1, 7)\)[/tex], [tex]\((-1, -7)\)[/tex], [tex]\((\sqrt{7}, -\sqrt{7})\)[/tex], etc.
- None of these pairs will simultaneously sum up to -1.
4. Conclusion:
After analyzing the polynomial, it becomes apparent that there are no pairs of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] consisting of real numbers that satisfy both conditions [tex]\(a + b = 1\)[/tex] and [tex]\(ab = 7\)[/tex]. As a result:
Therefore, the polynomial [tex]\(x^2 - x + 7\)[/tex] cannot be factored into simpler binomials with real coefficients. Hence, the correct answer is:
- Cannot be factored
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.