Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To tackle the problem of factoring the polynomial [tex]\(x^2 - x + 7\)[/tex], let's examine it in detail.
Consider the quadratic polynomial [tex]\(x^2 - x + 7\)[/tex]. To factor this polynomial, we typically look for two binomials [tex]\((x - a)(x - b)\)[/tex] whose product equals the given polynomial. To do this, the coefficients and constants will need to match the original polynomial once expanded.
1. Identify Possible Factor Pairs: Let's assume it can be factored into [tex]\((x - a)(x - b)\)[/tex].
2. Expand the Binomials: By expanding [tex]\((x - a)(x - b)\)[/tex], we get:
[tex]\[ (x - a)(x - b) = x^2 - (a + b)x + ab \][/tex]
In this case, we need:
- The sum of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] to equal -1 (since the coefficient of [tex]\(x\)[/tex] is -1).
- The product of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] to equal 7, the constant term.
3. Solve the System of Equations:
- We need [tex]\(a + b = 1\)[/tex]
- We need [tex]\(ab = 7\)[/tex]
Let's find pairs [tex]\((a, b)\)[/tex] that satisfy these conditions adequately:
- The pairs [tex]\((a, b)\)[/tex] that multiply to 7 could be [tex]\((1, 7)\)[/tex], [tex]\((-1, -7)\)[/tex], [tex]\((\sqrt{7}, -\sqrt{7})\)[/tex], etc.
- None of these pairs will simultaneously sum up to -1.
4. Conclusion:
After analyzing the polynomial, it becomes apparent that there are no pairs of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] consisting of real numbers that satisfy both conditions [tex]\(a + b = 1\)[/tex] and [tex]\(ab = 7\)[/tex]. As a result:
Therefore, the polynomial [tex]\(x^2 - x + 7\)[/tex] cannot be factored into simpler binomials with real coefficients. Hence, the correct answer is:
- Cannot be factored
Consider the quadratic polynomial [tex]\(x^2 - x + 7\)[/tex]. To factor this polynomial, we typically look for two binomials [tex]\((x - a)(x - b)\)[/tex] whose product equals the given polynomial. To do this, the coefficients and constants will need to match the original polynomial once expanded.
1. Identify Possible Factor Pairs: Let's assume it can be factored into [tex]\((x - a)(x - b)\)[/tex].
2. Expand the Binomials: By expanding [tex]\((x - a)(x - b)\)[/tex], we get:
[tex]\[ (x - a)(x - b) = x^2 - (a + b)x + ab \][/tex]
In this case, we need:
- The sum of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] to equal -1 (since the coefficient of [tex]\(x\)[/tex] is -1).
- The product of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] to equal 7, the constant term.
3. Solve the System of Equations:
- We need [tex]\(a + b = 1\)[/tex]
- We need [tex]\(ab = 7\)[/tex]
Let's find pairs [tex]\((a, b)\)[/tex] that satisfy these conditions adequately:
- The pairs [tex]\((a, b)\)[/tex] that multiply to 7 could be [tex]\((1, 7)\)[/tex], [tex]\((-1, -7)\)[/tex], [tex]\((\sqrt{7}, -\sqrt{7})\)[/tex], etc.
- None of these pairs will simultaneously sum up to -1.
4. Conclusion:
After analyzing the polynomial, it becomes apparent that there are no pairs of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] consisting of real numbers that satisfy both conditions [tex]\(a + b = 1\)[/tex] and [tex]\(ab = 7\)[/tex]. As a result:
Therefore, the polynomial [tex]\(x^2 - x + 7\)[/tex] cannot be factored into simpler binomials with real coefficients. Hence, the correct answer is:
- Cannot be factored
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.