Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve this problem, we need to form a system of linear equations that corresponds to the given conditions about the elevation gains. Let's denote:
- [tex]\( x \)[/tex] as the elevation gain from the starting point to checkpoint 1.
- [tex]\( y \)[/tex] as the elevation gain from checkpoint 1 to checkpoint 2.
- [tex]\( z \)[/tex] as the elevation gain from checkpoint 2 to the peak.
Here are the conditions given:
1. The total elevation gain is 2,100 feet.
[tex]\[ x + y + z = 2100 \][/tex]
2. The elevation gain to checkpoint 1 is 100 feet less than double the elevation gain from checkpoint 2 to the peak.
[tex]\[ x = 2z - 100 \][/tex]
3. The elevation gain from checkpoint 1 to checkpoint 2 is the mean of the elevation gains from the start to checkpoint 1 and from checkpoint 2 to the peak.
[tex]\[ y = \frac{x + z}{2} \][/tex]
We can rewrite these equations to form a system of linear equations suitable for an augmented matrix:
1. [tex]\( x + y + z = 2100 \)[/tex]
2. Rearrange [tex]\( x = 2z - 100 \)[/tex] to form :
[tex]\[ -x + 0y + 2z = 100 \][/tex]
3. Rearrange [tex]\( y = \frac{x + z}{2} \)[/tex] to form :
[tex]\[ 0.5x + y + 0.5z = 0 \][/tex]
The augmented matrices that accurately represent these conditions are:
[tex]\[ \left[ \begin{array}{ccc|c} 1 & 1 & 1 & 2100 \\ -1 & 0 & 2 & 100 \\ 0.5 & 1 & 0.5 & 0 \end{array} \right] \][/tex]
And for the proper representation of the equations:
[tex]\[ \left[ \begin{array}{ccc|c} 1 & 1 & 1 & 2100 \\ -1 & 0 & 2 & 100 \\ 0.5 & -1 & 0.5 & 0 \end{array} \right] \][/tex]
Thus, the correct augmented matrices are:
[tex]\[ \left[ \begin{array}{ccc|c} 1 & 1 & 1 & 2100 \\ -1 & 0 & 2 & 100 \\ 0.5 & 1 & 0.5 & 0 \end{array} \right], \quad \text{and} \quad \left[ \begin{array}{ccc|c} 1 & 1 & 1 & 2100 \\ -1 & 0 & 2 & 100 \\ 0.5 & -1 & 0.5 & 0 \end{array} \right] \][/tex]
- [tex]\( x \)[/tex] as the elevation gain from the starting point to checkpoint 1.
- [tex]\( y \)[/tex] as the elevation gain from checkpoint 1 to checkpoint 2.
- [tex]\( z \)[/tex] as the elevation gain from checkpoint 2 to the peak.
Here are the conditions given:
1. The total elevation gain is 2,100 feet.
[tex]\[ x + y + z = 2100 \][/tex]
2. The elevation gain to checkpoint 1 is 100 feet less than double the elevation gain from checkpoint 2 to the peak.
[tex]\[ x = 2z - 100 \][/tex]
3. The elevation gain from checkpoint 1 to checkpoint 2 is the mean of the elevation gains from the start to checkpoint 1 and from checkpoint 2 to the peak.
[tex]\[ y = \frac{x + z}{2} \][/tex]
We can rewrite these equations to form a system of linear equations suitable for an augmented matrix:
1. [tex]\( x + y + z = 2100 \)[/tex]
2. Rearrange [tex]\( x = 2z - 100 \)[/tex] to form :
[tex]\[ -x + 0y + 2z = 100 \][/tex]
3. Rearrange [tex]\( y = \frac{x + z}{2} \)[/tex] to form :
[tex]\[ 0.5x + y + 0.5z = 0 \][/tex]
The augmented matrices that accurately represent these conditions are:
[tex]\[ \left[ \begin{array}{ccc|c} 1 & 1 & 1 & 2100 \\ -1 & 0 & 2 & 100 \\ 0.5 & 1 & 0.5 & 0 \end{array} \right] \][/tex]
And for the proper representation of the equations:
[tex]\[ \left[ \begin{array}{ccc|c} 1 & 1 & 1 & 2100 \\ -1 & 0 & 2 & 100 \\ 0.5 & -1 & 0.5 & 0 \end{array} \right] \][/tex]
Thus, the correct augmented matrices are:
[tex]\[ \left[ \begin{array}{ccc|c} 1 & 1 & 1 & 2100 \\ -1 & 0 & 2 & 100 \\ 0.5 & 1 & 0.5 & 0 \end{array} \right], \quad \text{and} \quad \left[ \begin{array}{ccc|c} 1 & 1 & 1 & 2100 \\ -1 & 0 & 2 & 100 \\ 0.5 & -1 & 0.5 & 0 \end{array} \right] \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.