Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the end behavior of the given function [tex]\( f(x) = 10 \cdot (0.75)^x \)[/tex], we need to consider what happens to the values of [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] approaches negative infinity and positive infinity.
### Left End Behavior
- As [tex]\( x \)[/tex] approaches negative infinity ([tex]\( x \to -\infty \)[/tex]):
- The base of the exponential function, [tex]\( 0.75 \)[/tex], is a fraction less than 1.
- When raised to a large negative power, a fraction less than 1 becomes very large.
- Hence, [tex]\( (0.75)^x \)[/tex] becomes very large as [tex]\( x \)[/tex] becomes more negative.
- Multiplying by 10 does not change the fundamental behavior; thus, [tex]\( f(x) \)[/tex] approaches positive infinity.
### Right End Behavior
- As [tex]\( x \)[/tex] approaches positive infinity ([tex]\( x \to \infty \)[/tex]):
- The base [tex]\( 0.75 \)[/tex] raised to a large positive power gets smaller and smaller, approaching zero.
- Therefore, [tex]\( (0.75)^x \)[/tex] approaches zero as [tex]\( x \)[/tex] increases.
- Multiplying by 10 still results in the function approaching zero.
To summarize:
- The left end approaches positive infinity.
- The right end approaches zero.
Therefore, the completed statement is:
"The left end approaches [tex]\( \infty \)[/tex] and the right end approaches [tex]\( 0 \)[/tex]."
### Left End Behavior
- As [tex]\( x \)[/tex] approaches negative infinity ([tex]\( x \to -\infty \)[/tex]):
- The base of the exponential function, [tex]\( 0.75 \)[/tex], is a fraction less than 1.
- When raised to a large negative power, a fraction less than 1 becomes very large.
- Hence, [tex]\( (0.75)^x \)[/tex] becomes very large as [tex]\( x \)[/tex] becomes more negative.
- Multiplying by 10 does not change the fundamental behavior; thus, [tex]\( f(x) \)[/tex] approaches positive infinity.
### Right End Behavior
- As [tex]\( x \)[/tex] approaches positive infinity ([tex]\( x \to \infty \)[/tex]):
- The base [tex]\( 0.75 \)[/tex] raised to a large positive power gets smaller and smaller, approaching zero.
- Therefore, [tex]\( (0.75)^x \)[/tex] approaches zero as [tex]\( x \)[/tex] increases.
- Multiplying by 10 still results in the function approaching zero.
To summarize:
- The left end approaches positive infinity.
- The right end approaches zero.
Therefore, the completed statement is:
"The left end approaches [tex]\( \infty \)[/tex] and the right end approaches [tex]\( 0 \)[/tex]."
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.