Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Both Michaela's and Grace's solution strategies work. Let's go through each strategy step-by-step to verify this.
### Michaela's Strategy:
1. Equation Setup:
[tex]\( 4x^2 - 100 = 0 \)[/tex]
2. Factoring:
Recognize that the equation can be factored as the difference of squares.
[tex]\[ 4x^2 - 100 = (2x)^2 - 10^2 = (2x + 10)(2x - 10) = 0 \][/tex]
3. Zero Product Property:
Apply the zero product property, which states that if the product of two factors is zero, then at least one of the factors must be zero.
[tex]\[ 2x + 10 = 0 \quad \text{or} \quad 2x - 10 = 0 \][/tex]
4. Solving Each Equation:
- For [tex]\( 2x + 10 = 0 \)[/tex]:
[tex]\[ 2x = -10 \implies x = -5 \][/tex]
- For [tex]\( 2x - 10 = 0 \)[/tex]:
[tex]\[ 2x = 10 \implies x = 5 \][/tex]
5. Solutions:
[tex]\[ x = -5 \quad \text{or} \quad x = 5 \][/tex]
### Grace's Strategy:
1. Equation Setup:
[tex]\( 4x^2 - 100 = 0 \)[/tex]
2. Isolating [tex]\( x^2 \)[/tex]:
Add 100 to both sides to isolate the [tex]\(x^2\)[/tex] term.
[tex]\[ 4x^2 = 100 \][/tex]
3. Dividing by 4:
Divide both sides by 4 to further isolate [tex]\(x^2\)[/tex].
[tex]\[ x^2 = 25 \][/tex]
4. Taking the Square Root:
Take the square root of both sides to solve for [tex]\( x \)[/tex], remembering to consider both positive and negative roots.
[tex]\[ x = \pm \sqrt{25} \][/tex]
[tex]\[ x = \pm 5 \][/tex]
5. Solutions:
[tex]\[ x = -5 \quad \text{or} \quad x = 5 \][/tex]
### Conclusion:
Both strategies correctly solve the equation [tex]\( 4x^2 - 100 = 0 \)[/tex]. Michaela's factoring method and Grace's isolating and square root method both yield the solutions:
[tex]\[ x = -5 \quad \text{or} \quad x = 5 \][/tex]
Thus, both Michaela's and Grace's solution strategies work.
### Michaela's Strategy:
1. Equation Setup:
[tex]\( 4x^2 - 100 = 0 \)[/tex]
2. Factoring:
Recognize that the equation can be factored as the difference of squares.
[tex]\[ 4x^2 - 100 = (2x)^2 - 10^2 = (2x + 10)(2x - 10) = 0 \][/tex]
3. Zero Product Property:
Apply the zero product property, which states that if the product of two factors is zero, then at least one of the factors must be zero.
[tex]\[ 2x + 10 = 0 \quad \text{or} \quad 2x - 10 = 0 \][/tex]
4. Solving Each Equation:
- For [tex]\( 2x + 10 = 0 \)[/tex]:
[tex]\[ 2x = -10 \implies x = -5 \][/tex]
- For [tex]\( 2x - 10 = 0 \)[/tex]:
[tex]\[ 2x = 10 \implies x = 5 \][/tex]
5. Solutions:
[tex]\[ x = -5 \quad \text{or} \quad x = 5 \][/tex]
### Grace's Strategy:
1. Equation Setup:
[tex]\( 4x^2 - 100 = 0 \)[/tex]
2. Isolating [tex]\( x^2 \)[/tex]:
Add 100 to both sides to isolate the [tex]\(x^2\)[/tex] term.
[tex]\[ 4x^2 = 100 \][/tex]
3. Dividing by 4:
Divide both sides by 4 to further isolate [tex]\(x^2\)[/tex].
[tex]\[ x^2 = 25 \][/tex]
4. Taking the Square Root:
Take the square root of both sides to solve for [tex]\( x \)[/tex], remembering to consider both positive and negative roots.
[tex]\[ x = \pm \sqrt{25} \][/tex]
[tex]\[ x = \pm 5 \][/tex]
5. Solutions:
[tex]\[ x = -5 \quad \text{or} \quad x = 5 \][/tex]
### Conclusion:
Both strategies correctly solve the equation [tex]\( 4x^2 - 100 = 0 \)[/tex]. Michaela's factoring method and Grace's isolating and square root method both yield the solutions:
[tex]\[ x = -5 \quad \text{or} \quad x = 5 \][/tex]
Thus, both Michaela's and Grace's solution strategies work.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.