Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure, I'll guide you through the steps required to solve each part of the question using the equation [tex]\(4x + 3y = -12\)[/tex].
### Part (a): Graph the equation on a coordinate grid
1. Rewrite the Equation:
It's often helpful to rewrite the equation in slope-intercept form [tex]\(y = mx + b\)[/tex], but we'll keep it in its given form for plotting:
[tex]\[4x + 3y = -12\][/tex]
2. Find Intercepts:
- x-intercept (where [tex]\(y = 0\)[/tex]):
[tex]\[4x + 3(0) = -12 \Rightarrow 4x = -12 \Rightarrow x = -3\][/tex]
So, the x-intercept is [tex]\((-3, 0)\)[/tex].
- y-intercept (where [tex]\(x = 0\)[/tex]):
[tex]\[4(0) + 3y = -12 \Rightarrow 3y = -12 \Rightarrow y = -4\][/tex]
So, the y-intercept is [tex]\((0, -4)\)[/tex].
3. Plot Points and Draw Line:
- Plot the intercepts [tex]\((-3, 0)\)[/tex] and [tex]\((0, -4)\)[/tex] on the grid.
- Draw a straight line through these points to represent the equation [tex]\(4x + 3y = -12\)[/tex].
### Part (b): Give Three Solutions to the Equation
1. Point (0, -4):
- From the intercepts calculated above, we know that [tex]\((0, -4)\)[/tex] is a solution.
2. Point (3, -8):
- Substitute [tex]\(x = 3\)[/tex] into the equation:
[tex]\[4(3) + 3y = -12\][/tex]
[tex]\[12 + 3y = -12\][/tex]
[tex]\[3y = -24\][/tex]
[tex]\[y = -8\][/tex]
- So, [tex]\((3, -8)\)[/tex] is a solution.
3. Point (-3, 0):
- From the intercepts calculated above, we know that [tex]\((-3, 0)\)[/tex] is also a solution.
### Summary
- Three solutions for the equation [tex]\(4x + 3y = -12\)[/tex] are:
- [tex]\((0, -4)\)[/tex]
- [tex]\((3, -8)\)[/tex]
- [tex]\((-3, 0)\)[/tex]
These points all lie on the line represented by the equation, and you should graph the line by plotting these points and drawing a line through them.
### Part (a): Graph the equation on a coordinate grid
1. Rewrite the Equation:
It's often helpful to rewrite the equation in slope-intercept form [tex]\(y = mx + b\)[/tex], but we'll keep it in its given form for plotting:
[tex]\[4x + 3y = -12\][/tex]
2. Find Intercepts:
- x-intercept (where [tex]\(y = 0\)[/tex]):
[tex]\[4x + 3(0) = -12 \Rightarrow 4x = -12 \Rightarrow x = -3\][/tex]
So, the x-intercept is [tex]\((-3, 0)\)[/tex].
- y-intercept (where [tex]\(x = 0\)[/tex]):
[tex]\[4(0) + 3y = -12 \Rightarrow 3y = -12 \Rightarrow y = -4\][/tex]
So, the y-intercept is [tex]\((0, -4)\)[/tex].
3. Plot Points and Draw Line:
- Plot the intercepts [tex]\((-3, 0)\)[/tex] and [tex]\((0, -4)\)[/tex] on the grid.
- Draw a straight line through these points to represent the equation [tex]\(4x + 3y = -12\)[/tex].
### Part (b): Give Three Solutions to the Equation
1. Point (0, -4):
- From the intercepts calculated above, we know that [tex]\((0, -4)\)[/tex] is a solution.
2. Point (3, -8):
- Substitute [tex]\(x = 3\)[/tex] into the equation:
[tex]\[4(3) + 3y = -12\][/tex]
[tex]\[12 + 3y = -12\][/tex]
[tex]\[3y = -24\][/tex]
[tex]\[y = -8\][/tex]
- So, [tex]\((3, -8)\)[/tex] is a solution.
3. Point (-3, 0):
- From the intercepts calculated above, we know that [tex]\((-3, 0)\)[/tex] is also a solution.
### Summary
- Three solutions for the equation [tex]\(4x + 3y = -12\)[/tex] are:
- [tex]\((0, -4)\)[/tex]
- [tex]\((3, -8)\)[/tex]
- [tex]\((-3, 0)\)[/tex]
These points all lie on the line represented by the equation, and you should graph the line by plotting these points and drawing a line through them.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.