At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve these problems related to the motion of a woman attached to a bungee cord, let's start by finding her velocity as a function of time and then address each part of the question step-by-step.
### Given Function:
The height of the woman above the river as a function of time [tex]\( t \)[/tex] is given by:
[tex]\[ y(t) = 21 \left( 1 + e^{-t} \cos t \right) \][/tex]
### Part (a): Determining Her Velocity at [tex]\( t = 1 \)[/tex] and [tex]\( t = 3 \)[/tex]
Velocity is the rate of change of height with respect to time, which is the first derivative of [tex]\( y(t) \)[/tex].
First, we need to take the derivative of [tex]\( y(t) \)[/tex]:
[tex]\[ y(t) = 21 \left( 1 + e^{-t} \cos t \right) \][/tex]
### Derivative Calculation:
Using the product rule and the chain rule for differentiation:
[tex]\[ y(t) = 21[1 + e^{-t} \cos t] \][/tex]
[tex]\[ \frac{dy}{dt} = 21 \left[ \frac{d}{dt} (1) + \frac{d}{dt} \left( e^{-t} \cos t \right) \right] \][/tex]
[tex]\[ \frac{dy}{dt} = 21 \left[ 0 + e^{-t} \frac{d}{dt} (\cos t) + \cos t \frac{d}{dt} (e^{-t}) \right] \][/tex]
[tex]\[ \frac{dy}{dt} = 21 \left[ e^{-t} (-\sin t) + \cos t (-e^{-t}) \right] \][/tex]
[tex]\[ \frac{dy}{dt} = 21 \left[ -e^{-t} \sin t - e^{-t} \cos t \right] \][/tex]
[tex]\[ \frac{dy}{dt} = 21 \left[ -e^{-t} (\sin t + \cos t) \right] \][/tex]
[tex]\[ v(t) = -21 e^{-t} (\sin t + \cos t) \][/tex]
Now, let's evaluate this velocity function [tex]\( v(t) \)[/tex] at [tex]\( t = 1 \)[/tex] and [tex]\( t = 3 \)[/tex]:
1. Velocity at [tex]\( t = 1 \)[/tex]:
[tex]\[ v(1) = -21 e^{-1} (\sin 1 + \cos 1) \][/tex]
Using a calculator:
[tex]\[ \sin 1 \approx 0.8415 \][/tex]
[tex]\[ \cos 1 \approx 0.5403 \][/tex]
[tex]\[ e^{-1} \approx 0.3679 \][/tex]
[tex]\[ v(1) = -21 (0.3679) (0.8415 + 0.5403) \][/tex]
[tex]\[ v(1) = -21 (0.3679) (1.3818) \][/tex]
[tex]\[ v(1) \approx -21 \times 0.5085 \][/tex]
[tex]\[ v(1) \approx -10.679 \, \text{m/s} \][/tex]
2. Velocity at [tex]\( t = 3 \)[/tex]:
[tex]\[ v(3) = -21 e^{-3} (\sin 3 + \cos 3) \][/tex]
Using a calculator:
[tex]\[ \sin 3 \approx 0.1411 \][/tex]
[tex]\[ \cos 3 \approx -0.9895 \][/tex]
[tex]\[ e^{-3} \approx 0.0498 \][/tex]
[tex]\[ v(3) = -21 (0.0498) (0.1411 - 0.9895) \][/tex]
[tex]\[ v(3) = -21 (0.0498) (-0.8484) \][/tex]
[tex]\[ v(3) \approx -21 \times -0.0422 \][/tex]
[tex]\[ v(3) \approx 0.8862 \, \text{m/s} \][/tex]
### Summary of Part (a):
- Her velocity at [tex]\( t = 1 \)[/tex] is approximately [tex]\( -10.679 \, \text{m/s} \)[/tex].
- Her velocity at [tex]\( t = 3 \)[/tex] is approximately [tex]\( 0.8862 \, \text{m/s} \)[/tex].
### Part (b): Determine When She is Moving Downward and Upward
To determine when she is moving downward and when she is moving upward, we need to analyze the sign of [tex]\( v(t) \)[/tex].
- Moving Downward: [tex]\( v(t) < 0 \)[/tex]
- Moving Upward: [tex]\( v(t) > 0 \)[/tex]
We can determine this through a graphing utility. Essentially, you would plot [tex]\( v(t) = -21 e^{-t} (\sin t + \cos t) \)[/tex] over the interval [tex]\( 0 \le t \le 10 \)[/tex].
- She is moving downward when the graph of [tex]\( v(t) \)[/tex] is below the t-axis.
- She is moving upward when the graph of [tex]\( v(t) \)[/tex] is above the t-axis.
### Part (c): Estimate the Maximum Upward Velocity
The maximum upward velocity will occur at the point where [tex]\( v(t) \)[/tex] reaches its maximum positive value. This can be estimated using the graphing utility.
### Final Function for Part (a):
- Her velocity at time [tex]\( t \)[/tex] is given by the function [tex]\( v(t) = -21 e^{-t} (\sin t + \cos t) \)[/tex].
### Given Function:
The height of the woman above the river as a function of time [tex]\( t \)[/tex] is given by:
[tex]\[ y(t) = 21 \left( 1 + e^{-t} \cos t \right) \][/tex]
### Part (a): Determining Her Velocity at [tex]\( t = 1 \)[/tex] and [tex]\( t = 3 \)[/tex]
Velocity is the rate of change of height with respect to time, which is the first derivative of [tex]\( y(t) \)[/tex].
First, we need to take the derivative of [tex]\( y(t) \)[/tex]:
[tex]\[ y(t) = 21 \left( 1 + e^{-t} \cos t \right) \][/tex]
### Derivative Calculation:
Using the product rule and the chain rule for differentiation:
[tex]\[ y(t) = 21[1 + e^{-t} \cos t] \][/tex]
[tex]\[ \frac{dy}{dt} = 21 \left[ \frac{d}{dt} (1) + \frac{d}{dt} \left( e^{-t} \cos t \right) \right] \][/tex]
[tex]\[ \frac{dy}{dt} = 21 \left[ 0 + e^{-t} \frac{d}{dt} (\cos t) + \cos t \frac{d}{dt} (e^{-t}) \right] \][/tex]
[tex]\[ \frac{dy}{dt} = 21 \left[ e^{-t} (-\sin t) + \cos t (-e^{-t}) \right] \][/tex]
[tex]\[ \frac{dy}{dt} = 21 \left[ -e^{-t} \sin t - e^{-t} \cos t \right] \][/tex]
[tex]\[ \frac{dy}{dt} = 21 \left[ -e^{-t} (\sin t + \cos t) \right] \][/tex]
[tex]\[ v(t) = -21 e^{-t} (\sin t + \cos t) \][/tex]
Now, let's evaluate this velocity function [tex]\( v(t) \)[/tex] at [tex]\( t = 1 \)[/tex] and [tex]\( t = 3 \)[/tex]:
1. Velocity at [tex]\( t = 1 \)[/tex]:
[tex]\[ v(1) = -21 e^{-1} (\sin 1 + \cos 1) \][/tex]
Using a calculator:
[tex]\[ \sin 1 \approx 0.8415 \][/tex]
[tex]\[ \cos 1 \approx 0.5403 \][/tex]
[tex]\[ e^{-1} \approx 0.3679 \][/tex]
[tex]\[ v(1) = -21 (0.3679) (0.8415 + 0.5403) \][/tex]
[tex]\[ v(1) = -21 (0.3679) (1.3818) \][/tex]
[tex]\[ v(1) \approx -21 \times 0.5085 \][/tex]
[tex]\[ v(1) \approx -10.679 \, \text{m/s} \][/tex]
2. Velocity at [tex]\( t = 3 \)[/tex]:
[tex]\[ v(3) = -21 e^{-3} (\sin 3 + \cos 3) \][/tex]
Using a calculator:
[tex]\[ \sin 3 \approx 0.1411 \][/tex]
[tex]\[ \cos 3 \approx -0.9895 \][/tex]
[tex]\[ e^{-3} \approx 0.0498 \][/tex]
[tex]\[ v(3) = -21 (0.0498) (0.1411 - 0.9895) \][/tex]
[tex]\[ v(3) = -21 (0.0498) (-0.8484) \][/tex]
[tex]\[ v(3) \approx -21 \times -0.0422 \][/tex]
[tex]\[ v(3) \approx 0.8862 \, \text{m/s} \][/tex]
### Summary of Part (a):
- Her velocity at [tex]\( t = 1 \)[/tex] is approximately [tex]\( -10.679 \, \text{m/s} \)[/tex].
- Her velocity at [tex]\( t = 3 \)[/tex] is approximately [tex]\( 0.8862 \, \text{m/s} \)[/tex].
### Part (b): Determine When She is Moving Downward and Upward
To determine when she is moving downward and when she is moving upward, we need to analyze the sign of [tex]\( v(t) \)[/tex].
- Moving Downward: [tex]\( v(t) < 0 \)[/tex]
- Moving Upward: [tex]\( v(t) > 0 \)[/tex]
We can determine this through a graphing utility. Essentially, you would plot [tex]\( v(t) = -21 e^{-t} (\sin t + \cos t) \)[/tex] over the interval [tex]\( 0 \le t \le 10 \)[/tex].
- She is moving downward when the graph of [tex]\( v(t) \)[/tex] is below the t-axis.
- She is moving upward when the graph of [tex]\( v(t) \)[/tex] is above the t-axis.
### Part (c): Estimate the Maximum Upward Velocity
The maximum upward velocity will occur at the point where [tex]\( v(t) \)[/tex] reaches its maximum positive value. This can be estimated using the graphing utility.
### Final Function for Part (a):
- Her velocity at time [tex]\( t \)[/tex] is given by the function [tex]\( v(t) = -21 e^{-t} (\sin t + \cos t) \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.