Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To simplify the expression [tex]\(\left(\frac{5}{4} x^6 y^2\right)\left(3 x^3 y\right)\)[/tex], we can follow these steps:
1. Separate and multiply the coefficients:
- Take the coefficient from the first term, which is [tex]\(\frac{5}{4}\)[/tex].
- Take the coefficient from the second term, which is [tex]\(3\)[/tex].
- Multiply these coefficients together:
[tex]\[ \frac{5}{4} \times 3 = \frac{5 \times 3}{4} = \frac{15}{4} = 3.75 \][/tex]
2. Combine the exponents for the variable [tex]\(x\)[/tex]:
- The exponent of [tex]\(x\)[/tex] in the first term is [tex]\(6\)[/tex].
- The exponent of [tex]\(x\)[/tex] in the second term is [tex]\(3\)[/tex].
- When multiplying terms with the same base, add the exponents:
[tex]\[ x^6 \times x^3 = x^{6+3} = x^9 \][/tex]
3. Combine the exponents for the variable [tex]\(y\)[/tex]:
- The exponent of [tex]\(y\)[/tex] in the first term is [tex]\(2\)[/tex].
- The exponent of [tex]\(y\)[/tex] in the second term is [tex]\(1\)[/tex].
- When multiplying terms with the same base, add the exponents:
[tex]\[ y^2 \times y = y^{2+1} = y^3 \][/tex]
4. Form the simplified expression:
- Combine the simplified coefficient with the simplified variable expressions:
[tex]\[ 3.75 \cdot x^9 \cdot y^3 \][/tex]
Thus, the simplified expression is:
[tex]\[ \left(\frac{5}{4} x^6 y^2\right)\left(3 x^3 y\right) = 3.75 \cdot x^9 \cdot y^3 \][/tex]
1. Separate and multiply the coefficients:
- Take the coefficient from the first term, which is [tex]\(\frac{5}{4}\)[/tex].
- Take the coefficient from the second term, which is [tex]\(3\)[/tex].
- Multiply these coefficients together:
[tex]\[ \frac{5}{4} \times 3 = \frac{5 \times 3}{4} = \frac{15}{4} = 3.75 \][/tex]
2. Combine the exponents for the variable [tex]\(x\)[/tex]:
- The exponent of [tex]\(x\)[/tex] in the first term is [tex]\(6\)[/tex].
- The exponent of [tex]\(x\)[/tex] in the second term is [tex]\(3\)[/tex].
- When multiplying terms with the same base, add the exponents:
[tex]\[ x^6 \times x^3 = x^{6+3} = x^9 \][/tex]
3. Combine the exponents for the variable [tex]\(y\)[/tex]:
- The exponent of [tex]\(y\)[/tex] in the first term is [tex]\(2\)[/tex].
- The exponent of [tex]\(y\)[/tex] in the second term is [tex]\(1\)[/tex].
- When multiplying terms with the same base, add the exponents:
[tex]\[ y^2 \times y = y^{2+1} = y^3 \][/tex]
4. Form the simplified expression:
- Combine the simplified coefficient with the simplified variable expressions:
[tex]\[ 3.75 \cdot x^9 \cdot y^3 \][/tex]
Thus, the simplified expression is:
[tex]\[ \left(\frac{5}{4} x^6 y^2\right)\left(3 x^3 y\right) = 3.75 \cdot x^9 \cdot y^3 \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.