Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's find the left and right Riemann sums for the function [tex]\( f(x) = \frac{3}{x} + 2 \)[/tex] on the interval [tex]\([1, 5]\)[/tex] with [tex]\( n = 4 \)[/tex].
### Step-by-Step Solution:
1. Determine [tex]\(\Delta x\)[/tex]:
[tex]\[ \Delta x = \frac{b - a}{n} = \frac{5 - 1}{4} = 1 \][/tex]
2. Left Riemann Sum:
The left Riemann sum uses the left endpoints of each subinterval. The points we will evaluate [tex]\( f(x) \)[/tex] at are [tex]\( x_0, x_1, x_2, \)[/tex] and [tex]\( x_3 \)[/tex], where:
[tex]\[ x_0 = a = 1, \quad x_1 = 2, \quad x_2 = 3, \quad x_3 = 4 \][/tex]
The left Riemann sum is given by:
[tex]\[ L_n = \sum_{i=0}^{n-1} f(x_i) \Delta x \][/tex]
Substitute [tex]\( f(x) \)[/tex] and the values of [tex]\( x \)[/tex]:
[tex]\[ L_4 = \left(f(1) + f(2) + f(3) + f(4)\right) \Delta x \][/tex]
Calculate each [tex]\( f(x) \)[/tex]:
[tex]\[ f(1) = \frac{3}{1} + 2 = 5 \][/tex]
[tex]\[ f(2) = \frac{3}{2} + 2 = \frac{7}{2} \][/tex]
[tex]\[ f(3) = \frac{3}{3} + 2 = 3 \][/tex]
[tex]\[ f(4) = \frac{3}{4} + 2 = \frac{11}{4} \][/tex]
Now, sum these values and multiply by [tex]\(\Delta x\)[/tex]:
[tex]\[ L_4 = \left( 5 + \frac{7}{2} + 3 + \frac{11}{4} \right) \cdot 1 \][/tex]
Simplify the sum:
[tex]\[ L_4 = 5 + \frac{7}{2} + 3 + \frac{11}{4} = \frac{20}{4} + \frac{14}{4} + \frac{12}{4} + \frac{11}{4} = \frac{57}{4} \][/tex]
Therefore, the left Riemann sum is:
[tex]\[ \boxed{\frac{57}{4}} \][/tex]
3. Right Riemann Sum:
The right Riemann sum uses the right endpoints of each subinterval. The points we will evaluate [tex]\( f(x) \)[/tex] at are [tex]\( x_1, x_2, x_3, \)[/tex] and [tex]\( x_4 \)[/tex], where:
[tex]\[ x_1 = 2, \quad x_2 = 3, \quad x_3 = 4, \quad x_4 = b = 5 \][/tex]
The right Riemann sum is given by:
[tex]\[ R_n = \sum_{i=1}^{n} f(x_i) \Delta x \][/tex]
Substitute [tex]\( f(x) \)[/tex] and the values of [tex]\( x \)[/tex]:
[tex]\[ R_4 = \left(f(2) + f(3) + f(4) + f(5)\right) \Delta x \][/tex]
Calculate [tex]\( f(5) \)[/tex]:
[tex]\[ f(5) = \frac{3}{5} + 2 = \frac{13}{5} \][/tex]
Now, sum these values and multiply by [tex]\(\Delta x\)[/tex]:
[tex]\[ R_4 = \left( \frac{7}{2} + 3 + \frac{11}{4} + \frac{13}{5} \right) \cdot 1 \][/tex]
Simplify the sum (by normalizing to a common denominator, if needed) and add the values:
(We'll use the Python-computed value directly to avoid manual errors)
[tex]\[ R_4 = 11.85 \][/tex]
Therefore, the right Riemann sum is:
[tex]\[ \boxed{11.85} \][/tex]
### Step-by-Step Solution:
1. Determine [tex]\(\Delta x\)[/tex]:
[tex]\[ \Delta x = \frac{b - a}{n} = \frac{5 - 1}{4} = 1 \][/tex]
2. Left Riemann Sum:
The left Riemann sum uses the left endpoints of each subinterval. The points we will evaluate [tex]\( f(x) \)[/tex] at are [tex]\( x_0, x_1, x_2, \)[/tex] and [tex]\( x_3 \)[/tex], where:
[tex]\[ x_0 = a = 1, \quad x_1 = 2, \quad x_2 = 3, \quad x_3 = 4 \][/tex]
The left Riemann sum is given by:
[tex]\[ L_n = \sum_{i=0}^{n-1} f(x_i) \Delta x \][/tex]
Substitute [tex]\( f(x) \)[/tex] and the values of [tex]\( x \)[/tex]:
[tex]\[ L_4 = \left(f(1) + f(2) + f(3) + f(4)\right) \Delta x \][/tex]
Calculate each [tex]\( f(x) \)[/tex]:
[tex]\[ f(1) = \frac{3}{1} + 2 = 5 \][/tex]
[tex]\[ f(2) = \frac{3}{2} + 2 = \frac{7}{2} \][/tex]
[tex]\[ f(3) = \frac{3}{3} + 2 = 3 \][/tex]
[tex]\[ f(4) = \frac{3}{4} + 2 = \frac{11}{4} \][/tex]
Now, sum these values and multiply by [tex]\(\Delta x\)[/tex]:
[tex]\[ L_4 = \left( 5 + \frac{7}{2} + 3 + \frac{11}{4} \right) \cdot 1 \][/tex]
Simplify the sum:
[tex]\[ L_4 = 5 + \frac{7}{2} + 3 + \frac{11}{4} = \frac{20}{4} + \frac{14}{4} + \frac{12}{4} + \frac{11}{4} = \frac{57}{4} \][/tex]
Therefore, the left Riemann sum is:
[tex]\[ \boxed{\frac{57}{4}} \][/tex]
3. Right Riemann Sum:
The right Riemann sum uses the right endpoints of each subinterval. The points we will evaluate [tex]\( f(x) \)[/tex] at are [tex]\( x_1, x_2, x_3, \)[/tex] and [tex]\( x_4 \)[/tex], where:
[tex]\[ x_1 = 2, \quad x_2 = 3, \quad x_3 = 4, \quad x_4 = b = 5 \][/tex]
The right Riemann sum is given by:
[tex]\[ R_n = \sum_{i=1}^{n} f(x_i) \Delta x \][/tex]
Substitute [tex]\( f(x) \)[/tex] and the values of [tex]\( x \)[/tex]:
[tex]\[ R_4 = \left(f(2) + f(3) + f(4) + f(5)\right) \Delta x \][/tex]
Calculate [tex]\( f(5) \)[/tex]:
[tex]\[ f(5) = \frac{3}{5} + 2 = \frac{13}{5} \][/tex]
Now, sum these values and multiply by [tex]\(\Delta x\)[/tex]:
[tex]\[ R_4 = \left( \frac{7}{2} + 3 + \frac{11}{4} + \frac{13}{5} \right) \cdot 1 \][/tex]
Simplify the sum (by normalizing to a common denominator, if needed) and add the values:
(We'll use the Python-computed value directly to avoid manual errors)
[tex]\[ R_4 = 11.85 \][/tex]
Therefore, the right Riemann sum is:
[tex]\[ \boxed{11.85} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.