Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's find the left and right Riemann sums for the function [tex]\( f(x) = \frac{3}{x} + 2 \)[/tex] on the interval [tex]\([1, 5]\)[/tex] with [tex]\( n = 4 \)[/tex].
### Step-by-Step Solution:
1. Determine [tex]\(\Delta x\)[/tex]:
[tex]\[ \Delta x = \frac{b - a}{n} = \frac{5 - 1}{4} = 1 \][/tex]
2. Left Riemann Sum:
The left Riemann sum uses the left endpoints of each subinterval. The points we will evaluate [tex]\( f(x) \)[/tex] at are [tex]\( x_0, x_1, x_2, \)[/tex] and [tex]\( x_3 \)[/tex], where:
[tex]\[ x_0 = a = 1, \quad x_1 = 2, \quad x_2 = 3, \quad x_3 = 4 \][/tex]
The left Riemann sum is given by:
[tex]\[ L_n = \sum_{i=0}^{n-1} f(x_i) \Delta x \][/tex]
Substitute [tex]\( f(x) \)[/tex] and the values of [tex]\( x \)[/tex]:
[tex]\[ L_4 = \left(f(1) + f(2) + f(3) + f(4)\right) \Delta x \][/tex]
Calculate each [tex]\( f(x) \)[/tex]:
[tex]\[ f(1) = \frac{3}{1} + 2 = 5 \][/tex]
[tex]\[ f(2) = \frac{3}{2} + 2 = \frac{7}{2} \][/tex]
[tex]\[ f(3) = \frac{3}{3} + 2 = 3 \][/tex]
[tex]\[ f(4) = \frac{3}{4} + 2 = \frac{11}{4} \][/tex]
Now, sum these values and multiply by [tex]\(\Delta x\)[/tex]:
[tex]\[ L_4 = \left( 5 + \frac{7}{2} + 3 + \frac{11}{4} \right) \cdot 1 \][/tex]
Simplify the sum:
[tex]\[ L_4 = 5 + \frac{7}{2} + 3 + \frac{11}{4} = \frac{20}{4} + \frac{14}{4} + \frac{12}{4} + \frac{11}{4} = \frac{57}{4} \][/tex]
Therefore, the left Riemann sum is:
[tex]\[ \boxed{\frac{57}{4}} \][/tex]
3. Right Riemann Sum:
The right Riemann sum uses the right endpoints of each subinterval. The points we will evaluate [tex]\( f(x) \)[/tex] at are [tex]\( x_1, x_2, x_3, \)[/tex] and [tex]\( x_4 \)[/tex], where:
[tex]\[ x_1 = 2, \quad x_2 = 3, \quad x_3 = 4, \quad x_4 = b = 5 \][/tex]
The right Riemann sum is given by:
[tex]\[ R_n = \sum_{i=1}^{n} f(x_i) \Delta x \][/tex]
Substitute [tex]\( f(x) \)[/tex] and the values of [tex]\( x \)[/tex]:
[tex]\[ R_4 = \left(f(2) + f(3) + f(4) + f(5)\right) \Delta x \][/tex]
Calculate [tex]\( f(5) \)[/tex]:
[tex]\[ f(5) = \frac{3}{5} + 2 = \frac{13}{5} \][/tex]
Now, sum these values and multiply by [tex]\(\Delta x\)[/tex]:
[tex]\[ R_4 = \left( \frac{7}{2} + 3 + \frac{11}{4} + \frac{13}{5} \right) \cdot 1 \][/tex]
Simplify the sum (by normalizing to a common denominator, if needed) and add the values:
(We'll use the Python-computed value directly to avoid manual errors)
[tex]\[ R_4 = 11.85 \][/tex]
Therefore, the right Riemann sum is:
[tex]\[ \boxed{11.85} \][/tex]
### Step-by-Step Solution:
1. Determine [tex]\(\Delta x\)[/tex]:
[tex]\[ \Delta x = \frac{b - a}{n} = \frac{5 - 1}{4} = 1 \][/tex]
2. Left Riemann Sum:
The left Riemann sum uses the left endpoints of each subinterval. The points we will evaluate [tex]\( f(x) \)[/tex] at are [tex]\( x_0, x_1, x_2, \)[/tex] and [tex]\( x_3 \)[/tex], where:
[tex]\[ x_0 = a = 1, \quad x_1 = 2, \quad x_2 = 3, \quad x_3 = 4 \][/tex]
The left Riemann sum is given by:
[tex]\[ L_n = \sum_{i=0}^{n-1} f(x_i) \Delta x \][/tex]
Substitute [tex]\( f(x) \)[/tex] and the values of [tex]\( x \)[/tex]:
[tex]\[ L_4 = \left(f(1) + f(2) + f(3) + f(4)\right) \Delta x \][/tex]
Calculate each [tex]\( f(x) \)[/tex]:
[tex]\[ f(1) = \frac{3}{1} + 2 = 5 \][/tex]
[tex]\[ f(2) = \frac{3}{2} + 2 = \frac{7}{2} \][/tex]
[tex]\[ f(3) = \frac{3}{3} + 2 = 3 \][/tex]
[tex]\[ f(4) = \frac{3}{4} + 2 = \frac{11}{4} \][/tex]
Now, sum these values and multiply by [tex]\(\Delta x\)[/tex]:
[tex]\[ L_4 = \left( 5 + \frac{7}{2} + 3 + \frac{11}{4} \right) \cdot 1 \][/tex]
Simplify the sum:
[tex]\[ L_4 = 5 + \frac{7}{2} + 3 + \frac{11}{4} = \frac{20}{4} + \frac{14}{4} + \frac{12}{4} + \frac{11}{4} = \frac{57}{4} \][/tex]
Therefore, the left Riemann sum is:
[tex]\[ \boxed{\frac{57}{4}} \][/tex]
3. Right Riemann Sum:
The right Riemann sum uses the right endpoints of each subinterval. The points we will evaluate [tex]\( f(x) \)[/tex] at are [tex]\( x_1, x_2, x_3, \)[/tex] and [tex]\( x_4 \)[/tex], where:
[tex]\[ x_1 = 2, \quad x_2 = 3, \quad x_3 = 4, \quad x_4 = b = 5 \][/tex]
The right Riemann sum is given by:
[tex]\[ R_n = \sum_{i=1}^{n} f(x_i) \Delta x \][/tex]
Substitute [tex]\( f(x) \)[/tex] and the values of [tex]\( x \)[/tex]:
[tex]\[ R_4 = \left(f(2) + f(3) + f(4) + f(5)\right) \Delta x \][/tex]
Calculate [tex]\( f(5) \)[/tex]:
[tex]\[ f(5) = \frac{3}{5} + 2 = \frac{13}{5} \][/tex]
Now, sum these values and multiply by [tex]\(\Delta x\)[/tex]:
[tex]\[ R_4 = \left( \frac{7}{2} + 3 + \frac{11}{4} + \frac{13}{5} \right) \cdot 1 \][/tex]
Simplify the sum (by normalizing to a common denominator, if needed) and add the values:
(We'll use the Python-computed value directly to avoid manual errors)
[tex]\[ R_4 = 11.85 \][/tex]
Therefore, the right Riemann sum is:
[tex]\[ \boxed{11.85} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.