Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's begin by defining the sets [tex]\( P \)[/tex] and [tex]\( Q \)[/tex].
1. Set [tex]\( P \)[/tex]: This is the set of integers that are multiples of 3 between 1 and 20. The multiples of 3 within this range are:
[tex]\[ 3, 6, 9, 12, 15, 18 \][/tex]
So, [tex]\( P = \{3, 6, 9, 12, 15, 18\} \)[/tex].
2. Set [tex]\( Q \)[/tex]: This is the set of even natural numbers up to 15. The even natural numbers within this range are:
[tex]\[ 2, 4, 6, 8, 10, 12, 14 \][/tex]
So, [tex]\( Q = \{2, 4, 6, 8, 10, 12, 14\} \)[/tex].
3. Intersection of Sets [tex]\( P \)[/tex] and [tex]\( Q \)[/tex]: To find the intersection [tex]\( P \cap Q \)[/tex], we need the elements that are common to both sets [tex]\( P \)[/tex] and [tex]\( Q \)[/tex].
From the sets [tex]\( P = \{3, 6, 9, 12, 15, 18\} \)[/tex] and [tex]\( Q = \{2, 4, 6, 8, 10, 12, 14\} \)[/tex], the common elements are:
[tex]\[ 6 \][/tex] and [tex]\[ 12 \][/tex]
Thus, the intersection [tex]\( P \cap Q \)[/tex] is:
[tex]\[ P \cap Q = \{6, 12\} \][/tex]
Given this detailed breakdown, the correct answer is:
[tex]\[ \{6,12\} \][/tex]
So, the answer is the first option:
[tex]\[ \boxed{\{6,12\}} \][/tex]
1. Set [tex]\( P \)[/tex]: This is the set of integers that are multiples of 3 between 1 and 20. The multiples of 3 within this range are:
[tex]\[ 3, 6, 9, 12, 15, 18 \][/tex]
So, [tex]\( P = \{3, 6, 9, 12, 15, 18\} \)[/tex].
2. Set [tex]\( Q \)[/tex]: This is the set of even natural numbers up to 15. The even natural numbers within this range are:
[tex]\[ 2, 4, 6, 8, 10, 12, 14 \][/tex]
So, [tex]\( Q = \{2, 4, 6, 8, 10, 12, 14\} \)[/tex].
3. Intersection of Sets [tex]\( P \)[/tex] and [tex]\( Q \)[/tex]: To find the intersection [tex]\( P \cap Q \)[/tex], we need the elements that are common to both sets [tex]\( P \)[/tex] and [tex]\( Q \)[/tex].
From the sets [tex]\( P = \{3, 6, 9, 12, 15, 18\} \)[/tex] and [tex]\( Q = \{2, 4, 6, 8, 10, 12, 14\} \)[/tex], the common elements are:
[tex]\[ 6 \][/tex] and [tex]\[ 12 \][/tex]
Thus, the intersection [tex]\( P \cap Q \)[/tex] is:
[tex]\[ P \cap Q = \{6, 12\} \][/tex]
Given this detailed breakdown, the correct answer is:
[tex]\[ \{6,12\} \][/tex]
So, the answer is the first option:
[tex]\[ \boxed{\{6,12\}} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.