Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Subtract the polynomials.

[tex](10x + 5) - (-12x + 7)[/tex]

[tex]\square[/tex]

Sagot :

To subtract the polynomials [tex]\( (10x + 5) - (-12x + 7) \)[/tex], we will follow a step-by-step process.

1. Rewrite the subtraction as adding the opposite sign of the second polynomial:
We start with:
[tex]\[ (10x + 5) - (-12x + 7) \][/tex]
Subtracting a polynomial is the same as adding its opposite, therefore:
[tex]\[ (10x + 5) + (-1) \cdot (-12x + 7) \][/tex]

2. Distribute the [tex]\((-1)\)[/tex] through the second polynomial:
When we multiply [tex]\(-1\)[/tex] by each term in the polynomial [tex]\(-12x + 7\)[/tex], we get:
[tex]\[ (-1) \cdot (-12x) + (-1) \cdot 7 \Rightarrow 12x - 7 \][/tex]

So the expression becomes:
[tex]\[ (10x + 5) + (12x - 7) \][/tex]

3. Combine the like terms:
- Combine the [tex]\(x\)[/tex]-terms: [tex]\(10x + 12x = 22x\)[/tex]
- Combine the constant terms: [tex]\(5 - 7 = -2\)[/tex]

Therefore, our resulting polynomial is:
[tex]\[ 22x - 2 \][/tex]

So, the result of subtracting the polynomial [tex]\((-12x + 7)\)[/tex] from [tex]\((10x + 5)\)[/tex] is:
[tex]\[ \boxed{22x - 2} \][/tex]