Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine whether the function [tex]\( f(x) = \frac{4x}{x^2 - 1} \)[/tex] is even, odd, or neither, we need to evaluate [tex]\( f(-x) \)[/tex] and compare it to [tex]\( f(x) \)[/tex] and [tex]\(-f(x)\)[/tex].
1. Calculate [tex]\( f(-x) \)[/tex]:
We start by substituting [tex]\(-x\)[/tex] into the function:
[tex]\[ f(-x) = \frac{4(-x)}{(-x)^2 - 1} \][/tex]
2. Simplify [tex]\( f(-x) \)[/tex]:
Simplify the expression for [tex]\( f(-x) \)[/tex]:
[tex]\[ f(-x) = \frac{4(-x)}{x^2 - 1} = \frac{-4x}{x^2 - 1} \][/tex]
3. Compare [tex]\( f(x) \)[/tex] and [tex]\( f(-x) \)[/tex]:
Now, let's compare [tex]\( f(x) \)[/tex] and [tex]\( f(-x) \)[/tex]:
- [tex]\( f(x) = \frac{4x}{x^2 - 1} \)[/tex]
- [tex]\( f(-x) = \frac{-4x}{x^2 - 1} \)[/tex]
We observe that [tex]\( f(-x) \)[/tex] is the negative of [tex]\( f(x) \)[/tex]:
[tex]\[ f(-x) = -f(x) \][/tex]
4. Conclusion:
Since [tex]\( f(-x) = -f(x) \)[/tex], the function [tex]\( f(x) \)[/tex] satisfies the condition for being an odd function.
Therefore, we conclude that the function [tex]\( f(x) = \frac{4x}{x^2 - 1} \)[/tex] is an [tex]\(\textbf{odd}\)[/tex] function.
1. Calculate [tex]\( f(-x) \)[/tex]:
We start by substituting [tex]\(-x\)[/tex] into the function:
[tex]\[ f(-x) = \frac{4(-x)}{(-x)^2 - 1} \][/tex]
2. Simplify [tex]\( f(-x) \)[/tex]:
Simplify the expression for [tex]\( f(-x) \)[/tex]:
[tex]\[ f(-x) = \frac{4(-x)}{x^2 - 1} = \frac{-4x}{x^2 - 1} \][/tex]
3. Compare [tex]\( f(x) \)[/tex] and [tex]\( f(-x) \)[/tex]:
Now, let's compare [tex]\( f(x) \)[/tex] and [tex]\( f(-x) \)[/tex]:
- [tex]\( f(x) = \frac{4x}{x^2 - 1} \)[/tex]
- [tex]\( f(-x) = \frac{-4x}{x^2 - 1} \)[/tex]
We observe that [tex]\( f(-x) \)[/tex] is the negative of [tex]\( f(x) \)[/tex]:
[tex]\[ f(-x) = -f(x) \][/tex]
4. Conclusion:
Since [tex]\( f(-x) = -f(x) \)[/tex], the function [tex]\( f(x) \)[/tex] satisfies the condition for being an odd function.
Therefore, we conclude that the function [tex]\( f(x) = \frac{4x}{x^2 - 1} \)[/tex] is an [tex]\(\textbf{odd}\)[/tex] function.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.