At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the equation of the axis of symmetry for the parabola represented by [tex]\( y = -x^2 + 4x + 5 \)[/tex] and determine the maximum value of the expression, follow these steps:
1. Identify the coefficients:
The given quadratic equation is [tex]\( y = -x^2 + 4x + 5 \)[/tex]. Here, the coefficients are:
- [tex]\( a = -1 \)[/tex]
- [tex]\( b = 4 \)[/tex]
- [tex]\( c = 5 \)[/tex]
2. Calculate the axis of symmetry:
The axis of symmetry for a parabola in the form [tex]\( y = ax^2 + bx + c \)[/tex] is given by the formula:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Substituting the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] into this formula, we get:
[tex]\[ x = -\frac{4}{2(-1)} = -\frac{4}{-2} = 2 \][/tex]
Thus, the equation of the axis of symmetry is [tex]\( x = 2 \)[/tex].
3. Determine the maximum value:
Since the parabola opens downwards (i.e., [tex]\( a < 0 \)[/tex]), the vertex represents the maximum point. To find the maximum value, substitute [tex]\( x = 2 \)[/tex] (the axis of symmetry) back into the original equation:
[tex]\[ y = -x^2 + 4x + 5 \][/tex]
[tex]\[ y = -(2)^2 + 4(2) + 5 \][/tex]
[tex]\[ y = -4 + 8 + 5 \][/tex]
[tex]\[ y = 9 \][/tex]
Therefore, the maximum value of the expression [tex]\( -x^2 + 4x + 5 \)[/tex] is 9.
Conclusion:
- The equation of the axis of symmetry is [tex]\( x = 2 \)[/tex].
- The maximum value of the expression [tex]\( -x^2 + 4x + 5 \)[/tex] is [tex]\( 9 \)[/tex].
1. Identify the coefficients:
The given quadratic equation is [tex]\( y = -x^2 + 4x + 5 \)[/tex]. Here, the coefficients are:
- [tex]\( a = -1 \)[/tex]
- [tex]\( b = 4 \)[/tex]
- [tex]\( c = 5 \)[/tex]
2. Calculate the axis of symmetry:
The axis of symmetry for a parabola in the form [tex]\( y = ax^2 + bx + c \)[/tex] is given by the formula:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Substituting the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] into this formula, we get:
[tex]\[ x = -\frac{4}{2(-1)} = -\frac{4}{-2} = 2 \][/tex]
Thus, the equation of the axis of symmetry is [tex]\( x = 2 \)[/tex].
3. Determine the maximum value:
Since the parabola opens downwards (i.e., [tex]\( a < 0 \)[/tex]), the vertex represents the maximum point. To find the maximum value, substitute [tex]\( x = 2 \)[/tex] (the axis of symmetry) back into the original equation:
[tex]\[ y = -x^2 + 4x + 5 \][/tex]
[tex]\[ y = -(2)^2 + 4(2) + 5 \][/tex]
[tex]\[ y = -4 + 8 + 5 \][/tex]
[tex]\[ y = 9 \][/tex]
Therefore, the maximum value of the expression [tex]\( -x^2 + 4x + 5 \)[/tex] is 9.
Conclusion:
- The equation of the axis of symmetry is [tex]\( x = 2 \)[/tex].
- The maximum value of the expression [tex]\( -x^2 + 4x + 5 \)[/tex] is [tex]\( 9 \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.