Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the domain of the function [tex]\( f(x) = \frac{3}{4} |x - 3| + 1 \)[/tex], we need to consider the definition and components of the function.
1. Absolute Value Function: The absolute value function [tex]\( |x - 3| \)[/tex] is defined for all real numbers [tex]\( x \)[/tex]. This is because taking the absolute value of any real number [tex]\( x - 3 \)[/tex] always yields a non-negative real number. Therefore, there are no restrictions on [tex]\( x \)[/tex] from the absolute value component.
2. Linear Operations: The terms involving multiplication by [tex]\(\frac{3}{4}\)[/tex] and addition by [tex]\(1\)[/tex] are linear operations. Multiplying by a constant [tex]\(\frac{3}{4}\)[/tex] and then adding another constant [tex]\(1\)[/tex] are operations that do not impose any restrictions on [tex]\( x \)[/tex].
Since neither the absolute value operation nor the subsequent linear transformations impose any restrictions on [tex]\( x \)[/tex], the function [tex]\( f(x) \)[/tex] is defined for all real numbers.
Thus, the domain of the function [tex]\( f(x) = \frac{3}{4} |x - 3| + 1 \)[/tex] is all real numbers. This is expressed in interval notation as:
[tex]\[ (-\infty, \infty) \][/tex]
Based on the analysis, the correct answer is:
C. [tex]\( (-\infty, \infty) \)[/tex]
1. Absolute Value Function: The absolute value function [tex]\( |x - 3| \)[/tex] is defined for all real numbers [tex]\( x \)[/tex]. This is because taking the absolute value of any real number [tex]\( x - 3 \)[/tex] always yields a non-negative real number. Therefore, there are no restrictions on [tex]\( x \)[/tex] from the absolute value component.
2. Linear Operations: The terms involving multiplication by [tex]\(\frac{3}{4}\)[/tex] and addition by [tex]\(1\)[/tex] are linear operations. Multiplying by a constant [tex]\(\frac{3}{4}\)[/tex] and then adding another constant [tex]\(1\)[/tex] are operations that do not impose any restrictions on [tex]\( x \)[/tex].
Since neither the absolute value operation nor the subsequent linear transformations impose any restrictions on [tex]\( x \)[/tex], the function [tex]\( f(x) \)[/tex] is defined for all real numbers.
Thus, the domain of the function [tex]\( f(x) = \frac{3}{4} |x - 3| + 1 \)[/tex] is all real numbers. This is expressed in interval notation as:
[tex]\[ (-\infty, \infty) \][/tex]
Based on the analysis, the correct answer is:
C. [tex]\( (-\infty, \infty) \)[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.