Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the vertex of the given absolute value function [tex]\( f(x) = -\frac{2}{3} |x + 4| \)[/tex], we need to understand the structure and properties of absolute value functions.
An absolute value function of the form [tex]\( f(x) = a |x - h| + k \)[/tex] has its vertex at the point [tex]\((h, k)\)[/tex]. Here, [tex]\(a\)[/tex] affects the steepness and direction of the function, [tex]\(h\)[/tex] is the horizontal shift, and [tex]\(k\)[/tex] is the vertical shift.
For the given function [tex]\( f(x) = -\frac{2}{3} |x + 4| \)[/tex]:
- The coefficient [tex]\( a = -\frac{2}{3} \)[/tex], which indicates the absolute value function is vertically compressed by a factor of [tex]\(\frac{2}{3}\)[/tex] and oriented downwards due to the negative sign.
- The term inside the absolute value is [tex]\(x + 4\)[/tex], which can be rewritten as [tex]\( x - (-4) \)[/tex]. This shows a horizontal shift of the function 4 units to the left ([tex]\(h = -4\)[/tex]).
- There is no [tex]\(k\)[/tex] term present, so [tex]\(k = 0\)[/tex], indicating no vertical shift.
Putting these together, the vertex of the function [tex]\( f(x) = -\frac{2}{3} |x + 4| \)[/tex] is at the point [tex]\((-4, 0)\)[/tex].
Thus, the vertex of the function is at [tex]\(\boxed{(-4, 0)}\)[/tex].
An absolute value function of the form [tex]\( f(x) = a |x - h| + k \)[/tex] has its vertex at the point [tex]\((h, k)\)[/tex]. Here, [tex]\(a\)[/tex] affects the steepness and direction of the function, [tex]\(h\)[/tex] is the horizontal shift, and [tex]\(k\)[/tex] is the vertical shift.
For the given function [tex]\( f(x) = -\frac{2}{3} |x + 4| \)[/tex]:
- The coefficient [tex]\( a = -\frac{2}{3} \)[/tex], which indicates the absolute value function is vertically compressed by a factor of [tex]\(\frac{2}{3}\)[/tex] and oriented downwards due to the negative sign.
- The term inside the absolute value is [tex]\(x + 4\)[/tex], which can be rewritten as [tex]\( x - (-4) \)[/tex]. This shows a horizontal shift of the function 4 units to the left ([tex]\(h = -4\)[/tex]).
- There is no [tex]\(k\)[/tex] term present, so [tex]\(k = 0\)[/tex], indicating no vertical shift.
Putting these together, the vertex of the function [tex]\( f(x) = -\frac{2}{3} |x + 4| \)[/tex] is at the point [tex]\((-4, 0)\)[/tex].
Thus, the vertex of the function is at [tex]\(\boxed{(-4, 0)}\)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.