Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

How do you know that the sum of [tex]\left(-2 \frac{3}{4}\right)[/tex] and [tex]\frac{5}{9}[/tex] is rational?

A. The sum is a terminating and a repeating decimal.
B. The sum is a non-terminating and a non-repeating decimal.
C. The sum is a fraction.
D. The sum is an integer.


Sagot :

To determine the nature of the sum of [tex]\(\left(-2 \frac{3}{4}\right)\)[/tex] and [tex]\(\frac{5}{9}\)[/tex], we'll follow these steps:

1. Convert the Mixed Number to an Improper Fraction:
- The mixed number [tex]\(-2 \frac{3}{4}\)[/tex] can be converted to an improper fraction.
- [tex]\(-2\)[/tex] can be written as [tex]\(-2\)[/tex], and [tex]\(\frac{3}{4}\)[/tex] is a fraction. Together, they form:
[tex]\[ -2 \frac{3}{4} = -2 - \frac{3}{4} \][/tex]
- Converting [tex]\(-2\)[/tex] into a fraction with the denominator 4:
[tex]\[ -2 = -\frac{8}{4} \][/tex]
- Now, combine the fractions:
[tex]\[ -\frac{8}{4} - \frac{3}{4} = -\frac{11}{4} \][/tex]

2. Express the Given Fraction
- The given fraction is [tex]\(\frac{5}{9}\)[/tex].

3. Sum the Two Fractions:
- To add the fractions [tex]\(-\frac{11}{4}\)[/tex] and [tex]\(\frac{5}{9}\)[/tex], first find a common denominator.
- The least common multiple (LCM) of 4 and 9 is 36.
- Convert each fraction to have this common denominator:
[tex]\[ -\frac{11}{4} = -\frac{11 \times 9}{4 \times 9} = -\frac{99}{36} \][/tex]
[tex]\[ \frac{5}{9} = \frac{5 \times 4}{9 \times 4} = \frac{20}{36} \][/tex]
- Now that both fractions have the same denominator, add them:
[tex]\[ -\frac{99}{36} + \frac{20}{36} = \frac{-99 + 20}{36} = \frac{-79}{36} \][/tex]

4. Understanding the Sum:
- The sum [tex]\(\frac{-79}{36}\)[/tex] is a fraction.

5. Conclusion:
- A rational number is defined as any number that can be expressed as the quotient [tex]\(\frac{p}{q}\)[/tex] of two integers [tex]\(p\)[/tex] and [tex]\(q\)[/tex], where [tex]\(q \neq 0\)[/tex].
- Since [tex]\(\frac{-79}{36}\)[/tex] is expressed as the quotient of two integers, it is indeed a fraction (and therefore a rational number).

Hence, the sum is a fraction.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.