Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

How do you know that the sum of [tex]\left(-2 \frac{3}{4}\right)[/tex] and [tex]\frac{5}{9}[/tex] is rational?

A. The sum is a terminating and a repeating decimal.
B. The sum is a non-terminating and a non-repeating decimal.
C. The sum is a fraction.
D. The sum is an integer.

Sagot :

To determine the nature of the sum of [tex]\(\left(-2 \frac{3}{4}\right)\)[/tex] and [tex]\(\frac{5}{9}\)[/tex], we'll follow these steps:

1. Convert the Mixed Number to an Improper Fraction:
- The mixed number [tex]\(-2 \frac{3}{4}\)[/tex] can be converted to an improper fraction.
- [tex]\(-2\)[/tex] can be written as [tex]\(-2\)[/tex], and [tex]\(\frac{3}{4}\)[/tex] is a fraction. Together, they form:
[tex]\[ -2 \frac{3}{4} = -2 - \frac{3}{4} \][/tex]
- Converting [tex]\(-2\)[/tex] into a fraction with the denominator 4:
[tex]\[ -2 = -\frac{8}{4} \][/tex]
- Now, combine the fractions:
[tex]\[ -\frac{8}{4} - \frac{3}{4} = -\frac{11}{4} \][/tex]

2. Express the Given Fraction
- The given fraction is [tex]\(\frac{5}{9}\)[/tex].

3. Sum the Two Fractions:
- To add the fractions [tex]\(-\frac{11}{4}\)[/tex] and [tex]\(\frac{5}{9}\)[/tex], first find a common denominator.
- The least common multiple (LCM) of 4 and 9 is 36.
- Convert each fraction to have this common denominator:
[tex]\[ -\frac{11}{4} = -\frac{11 \times 9}{4 \times 9} = -\frac{99}{36} \][/tex]
[tex]\[ \frac{5}{9} = \frac{5 \times 4}{9 \times 4} = \frac{20}{36} \][/tex]
- Now that both fractions have the same denominator, add them:
[tex]\[ -\frac{99}{36} + \frac{20}{36} = \frac{-99 + 20}{36} = \frac{-79}{36} \][/tex]

4. Understanding the Sum:
- The sum [tex]\(\frac{-79}{36}\)[/tex] is a fraction.

5. Conclusion:
- A rational number is defined as any number that can be expressed as the quotient [tex]\(\frac{p}{q}\)[/tex] of two integers [tex]\(p\)[/tex] and [tex]\(q\)[/tex], where [tex]\(q \neq 0\)[/tex].
- Since [tex]\(\frac{-79}{36}\)[/tex] is expressed as the quotient of two integers, it is indeed a fraction (and therefore a rational number).

Hence, the sum is a fraction.