Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To simplify [tex]\(\log_5(625)\)[/tex] without a calculator, let's break it down step-by-step.
1. Understand the Expression: The problem is asking for the logarithm of 625 with base 5. In mathematical terms, [tex]\(\log_5(625)\)[/tex] asks the question: "To what power should we raise 5 to obtain 625?"
2. Express 625 as a Power of 5: We need to see if 625 can be written as [tex]\(5^n\)[/tex] for some integer [tex]\(n\)[/tex].
Let's try to find such [tex]\(n\)[/tex]:
- [tex]\(5^1 = 5\)[/tex]
- [tex]\(5^2 = 25\)[/tex]
- [tex]\(5^3 = 125\)[/tex]
- [tex]\(5^4 = 625\)[/tex]
We see that [tex]\(625 = 5^4\)[/tex].
3. Apply the Property of Logarithms: Given [tex]\(625 = 5^4\)[/tex], we can use the property of logarithms which states that [tex]\(\log_b(b^k) = k\)[/tex] when [tex]\(b\)[/tex] is the base and [tex]\(k\)[/tex] is the exponent.
So, [tex]\(\log_5(625) = \log_5(5^4)\)[/tex].
4. Simplify: Using the logarithmic property mentioned, [tex]\(\log_5(5^4) = 4\)[/tex].
Therefore, the simplified form of [tex]\(\log_5(625)\)[/tex] is:
[tex]\[ \boxed{4} \][/tex]
1. Understand the Expression: The problem is asking for the logarithm of 625 with base 5. In mathematical terms, [tex]\(\log_5(625)\)[/tex] asks the question: "To what power should we raise 5 to obtain 625?"
2. Express 625 as a Power of 5: We need to see if 625 can be written as [tex]\(5^n\)[/tex] for some integer [tex]\(n\)[/tex].
Let's try to find such [tex]\(n\)[/tex]:
- [tex]\(5^1 = 5\)[/tex]
- [tex]\(5^2 = 25\)[/tex]
- [tex]\(5^3 = 125\)[/tex]
- [tex]\(5^4 = 625\)[/tex]
We see that [tex]\(625 = 5^4\)[/tex].
3. Apply the Property of Logarithms: Given [tex]\(625 = 5^4\)[/tex], we can use the property of logarithms which states that [tex]\(\log_b(b^k) = k\)[/tex] when [tex]\(b\)[/tex] is the base and [tex]\(k\)[/tex] is the exponent.
So, [tex]\(\log_5(625) = \log_5(5^4)\)[/tex].
4. Simplify: Using the logarithmic property mentioned, [tex]\(\log_5(5^4) = 4\)[/tex].
Therefore, the simplified form of [tex]\(\log_5(625)\)[/tex] is:
[tex]\[ \boxed{4} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.