At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Which number is not a rational number?

A. [tex]\(-5 \frac{4}{11}\)[/tex]

B. [tex]\(\sqrt{31}\)[/tex]

C. 7.608

D. [tex]\(18.4 \overline{6}\)[/tex]


Sagot :

We need to determine which one of the given numbers is not rational. Let's analyze each number step by step.

1. [tex]\(-5 \frac{4}{11}\)[/tex]:
This number can be written as a mixed number: [tex]\(-5 + \frac{4}{11}\)[/tex]. Any mixed number can be expressed as a fraction of two integers. Specifically, [tex]\(-5 + \frac{4}{11}\)[/tex] equals to [tex]\(\frac{-55 + 4}{11} = \frac{-51}{11}\)[/tex], which is a ratio of two integers. Therefore, [tex]\(-5 \frac{4}{11}\)[/tex] is a rational number.

2. [tex]\(\sqrt{31}\)[/tex]:
The square root of 31 is an irrational number because 31 is not a perfect square. An irrational number is a number that cannot be exactly expressed as a ratio of two integers. Therefore, [tex]\(\sqrt{31}\)[/tex] is not a rational number.

3. 7.608:
This number can be written as a decimal. Any finite decimal can be expressed as a fraction of two integers. Specifically, 7.608 equals [tex]\(\frac{7608}{1000}\)[/tex], which can be simplified to a ratio of two integers. Therefore, 7.608 is a rational number.

4. [tex]\(18.4 \overline{6}\)[/tex]:
This is a repeating decimal where the digit 6 repeats indefinitely. Repeating decimals can always be expressed as fractions of two integers. Hence, [tex]\(18.4 \overline{6}\)[/tex] is a rational number.

In conclusion, the number that is not rational is:

[tex]\[ \boxed{\sqrt{31}} \][/tex]