Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the number of solutions to the equation [tex]\(\tan \left(\frac{\theta}{2}\right) = \sin (\theta)\)[/tex] within the interval [tex]\(0 \leq \theta < 2\pi\)[/tex], we need to consider the properties and behaviors of the tangent and sine functions over this interval.
1. Understand the Equation:
We need to solve:
[tex]\[ \tan \left(\frac{\theta}{2}\right) = \sin (\theta) \][/tex]
2. Examine the Range and Behavior:
- The function [tex]\(\tan(x)\)[/tex] has discontinuities (or undefined points) where [tex]\(x = \frac{(2k+1)\pi}{2}\)[/tex] for any integer [tex]\(k\)[/tex].
- [tex]\(\sin(x)\)[/tex] is defined for all [tex]\(x\)[/tex], and ranges between -1 and 1.
3. Solving for Solutions:
Given the characteristics of tangent and sine:
- [tex]\(\sin(\theta)\)[/tex] reaches its maximum (1) and minimum (-1) values at [tex]\(\theta = \frac{\pi}{2}\)[/tex] and [tex]\(\theta = \frac{3\pi}{2}\)[/tex], respectively.
- [tex]\(\tan \left(\frac{\theta}{2}\right)\)[/tex] will be equal to [tex]\(\sin(\theta)\)[/tex] at specific points where both functions align.
4. Identify Valid Solutions:
- We are considering values where both functions are defined and result in equality.
- For [tex]\(\tan \left(\frac{\theta}{2}\right)\)[/tex] to equal [tex]\(\sin(\theta)\)[/tex], [tex]\(\theta\)[/tex] should be carefully examined to ensure it does not fall at points where [tex]\(\tan\)[/tex] or [tex]\(\sin\)[/tex] are undefined.
5. List the Solutions:
From the details, we find three specific solutions within the interval from 0 to less than [tex]\(2\pi\)[/tex]:
[tex]\[ \theta = 0, \theta = \frac{3\pi}{2}, \theta = \frac{\pi}{2} \][/tex]
6. Exclude Any Undefined Solutions:
Each of these solutions must be checked to ensure that neither tangent nor sine functions are undefined at these points:
- At [tex]\(\theta = 0\)[/tex], [tex]\(\tan(0) = 0\)[/tex] and [tex]\(\sin(0) = 0\)[/tex], hence valid.
- At [tex]\(\theta = \frac{\pi}{2}\)[/tex], [tex]\(\tan \left(\frac{\pi}{4}\right) = 1\)[/tex] and [tex]\(\sin\left(\frac{\pi}{2}\right) = 1\)[/tex], hence valid.
- [tex]\(\theta = \frac{3\pi}{2}\)[/tex] results in both [tex]\(\tan\)[/tex] and [tex]\(\sin\)[/tex] values aligning validly in this interval, confirming it is a valid solution.
So, the number of valid solutions is three.
Thus, the answer is:
[tex]\[ \boxed{3} \][/tex]
1. Understand the Equation:
We need to solve:
[tex]\[ \tan \left(\frac{\theta}{2}\right) = \sin (\theta) \][/tex]
2. Examine the Range and Behavior:
- The function [tex]\(\tan(x)\)[/tex] has discontinuities (or undefined points) where [tex]\(x = \frac{(2k+1)\pi}{2}\)[/tex] for any integer [tex]\(k\)[/tex].
- [tex]\(\sin(x)\)[/tex] is defined for all [tex]\(x\)[/tex], and ranges between -1 and 1.
3. Solving for Solutions:
Given the characteristics of tangent and sine:
- [tex]\(\sin(\theta)\)[/tex] reaches its maximum (1) and minimum (-1) values at [tex]\(\theta = \frac{\pi}{2}\)[/tex] and [tex]\(\theta = \frac{3\pi}{2}\)[/tex], respectively.
- [tex]\(\tan \left(\frac{\theta}{2}\right)\)[/tex] will be equal to [tex]\(\sin(\theta)\)[/tex] at specific points where both functions align.
4. Identify Valid Solutions:
- We are considering values where both functions are defined and result in equality.
- For [tex]\(\tan \left(\frac{\theta}{2}\right)\)[/tex] to equal [tex]\(\sin(\theta)\)[/tex], [tex]\(\theta\)[/tex] should be carefully examined to ensure it does not fall at points where [tex]\(\tan\)[/tex] or [tex]\(\sin\)[/tex] are undefined.
5. List the Solutions:
From the details, we find three specific solutions within the interval from 0 to less than [tex]\(2\pi\)[/tex]:
[tex]\[ \theta = 0, \theta = \frac{3\pi}{2}, \theta = \frac{\pi}{2} \][/tex]
6. Exclude Any Undefined Solutions:
Each of these solutions must be checked to ensure that neither tangent nor sine functions are undefined at these points:
- At [tex]\(\theta = 0\)[/tex], [tex]\(\tan(0) = 0\)[/tex] and [tex]\(\sin(0) = 0\)[/tex], hence valid.
- At [tex]\(\theta = \frac{\pi}{2}\)[/tex], [tex]\(\tan \left(\frac{\pi}{4}\right) = 1\)[/tex] and [tex]\(\sin\left(\frac{\pi}{2}\right) = 1\)[/tex], hence valid.
- [tex]\(\theta = \frac{3\pi}{2}\)[/tex] results in both [tex]\(\tan\)[/tex] and [tex]\(\sin\)[/tex] values aligning validly in this interval, confirming it is a valid solution.
So, the number of valid solutions is three.
Thus, the answer is:
[tex]\[ \boxed{3} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.