At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the number of solutions to the equation [tex]\(\tan \left(\frac{\theta}{2}\right) = \sin (\theta)\)[/tex] within the interval [tex]\(0 \leq \theta < 2\pi\)[/tex], we need to consider the properties and behaviors of the tangent and sine functions over this interval.
1. Understand the Equation:
We need to solve:
[tex]\[ \tan \left(\frac{\theta}{2}\right) = \sin (\theta) \][/tex]
2. Examine the Range and Behavior:
- The function [tex]\(\tan(x)\)[/tex] has discontinuities (or undefined points) where [tex]\(x = \frac{(2k+1)\pi}{2}\)[/tex] for any integer [tex]\(k\)[/tex].
- [tex]\(\sin(x)\)[/tex] is defined for all [tex]\(x\)[/tex], and ranges between -1 and 1.
3. Solving for Solutions:
Given the characteristics of tangent and sine:
- [tex]\(\sin(\theta)\)[/tex] reaches its maximum (1) and minimum (-1) values at [tex]\(\theta = \frac{\pi}{2}\)[/tex] and [tex]\(\theta = \frac{3\pi}{2}\)[/tex], respectively.
- [tex]\(\tan \left(\frac{\theta}{2}\right)\)[/tex] will be equal to [tex]\(\sin(\theta)\)[/tex] at specific points where both functions align.
4. Identify Valid Solutions:
- We are considering values where both functions are defined and result in equality.
- For [tex]\(\tan \left(\frac{\theta}{2}\right)\)[/tex] to equal [tex]\(\sin(\theta)\)[/tex], [tex]\(\theta\)[/tex] should be carefully examined to ensure it does not fall at points where [tex]\(\tan\)[/tex] or [tex]\(\sin\)[/tex] are undefined.
5. List the Solutions:
From the details, we find three specific solutions within the interval from 0 to less than [tex]\(2\pi\)[/tex]:
[tex]\[ \theta = 0, \theta = \frac{3\pi}{2}, \theta = \frac{\pi}{2} \][/tex]
6. Exclude Any Undefined Solutions:
Each of these solutions must be checked to ensure that neither tangent nor sine functions are undefined at these points:
- At [tex]\(\theta = 0\)[/tex], [tex]\(\tan(0) = 0\)[/tex] and [tex]\(\sin(0) = 0\)[/tex], hence valid.
- At [tex]\(\theta = \frac{\pi}{2}\)[/tex], [tex]\(\tan \left(\frac{\pi}{4}\right) = 1\)[/tex] and [tex]\(\sin\left(\frac{\pi}{2}\right) = 1\)[/tex], hence valid.
- [tex]\(\theta = \frac{3\pi}{2}\)[/tex] results in both [tex]\(\tan\)[/tex] and [tex]\(\sin\)[/tex] values aligning validly in this interval, confirming it is a valid solution.
So, the number of valid solutions is three.
Thus, the answer is:
[tex]\[ \boxed{3} \][/tex]
1. Understand the Equation:
We need to solve:
[tex]\[ \tan \left(\frac{\theta}{2}\right) = \sin (\theta) \][/tex]
2. Examine the Range and Behavior:
- The function [tex]\(\tan(x)\)[/tex] has discontinuities (or undefined points) where [tex]\(x = \frac{(2k+1)\pi}{2}\)[/tex] for any integer [tex]\(k\)[/tex].
- [tex]\(\sin(x)\)[/tex] is defined for all [tex]\(x\)[/tex], and ranges between -1 and 1.
3. Solving for Solutions:
Given the characteristics of tangent and sine:
- [tex]\(\sin(\theta)\)[/tex] reaches its maximum (1) and minimum (-1) values at [tex]\(\theta = \frac{\pi}{2}\)[/tex] and [tex]\(\theta = \frac{3\pi}{2}\)[/tex], respectively.
- [tex]\(\tan \left(\frac{\theta}{2}\right)\)[/tex] will be equal to [tex]\(\sin(\theta)\)[/tex] at specific points where both functions align.
4. Identify Valid Solutions:
- We are considering values where both functions are defined and result in equality.
- For [tex]\(\tan \left(\frac{\theta}{2}\right)\)[/tex] to equal [tex]\(\sin(\theta)\)[/tex], [tex]\(\theta\)[/tex] should be carefully examined to ensure it does not fall at points where [tex]\(\tan\)[/tex] or [tex]\(\sin\)[/tex] are undefined.
5. List the Solutions:
From the details, we find three specific solutions within the interval from 0 to less than [tex]\(2\pi\)[/tex]:
[tex]\[ \theta = 0, \theta = \frac{3\pi}{2}, \theta = \frac{\pi}{2} \][/tex]
6. Exclude Any Undefined Solutions:
Each of these solutions must be checked to ensure that neither tangent nor sine functions are undefined at these points:
- At [tex]\(\theta = 0\)[/tex], [tex]\(\tan(0) = 0\)[/tex] and [tex]\(\sin(0) = 0\)[/tex], hence valid.
- At [tex]\(\theta = \frac{\pi}{2}\)[/tex], [tex]\(\tan \left(\frac{\pi}{4}\right) = 1\)[/tex] and [tex]\(\sin\left(\frac{\pi}{2}\right) = 1\)[/tex], hence valid.
- [tex]\(\theta = \frac{3\pi}{2}\)[/tex] results in both [tex]\(\tan\)[/tex] and [tex]\(\sin\)[/tex] values aligning validly in this interval, confirming it is a valid solution.
So, the number of valid solutions is three.
Thus, the answer is:
[tex]\[ \boxed{3} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.