Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the balance of a deposit in an account with continuous compounding interest, we use the continuous compounding formula, which is:
[tex]\[ A = P \cdot e^{rt} \][/tex]
where:
- [tex]\( A \)[/tex] is the amount of money accumulated after [tex]\( n \)[/tex] years, including interest.
- [tex]\( P \)[/tex] is the principal amount (the initial amount of money).
- [tex]\( r \)[/tex] is the annual interest rate (in decimal form).
- [tex]\( t \)[/tex] is the time the money is invested or borrowed for, in years.
- [tex]\( e \)[/tex] is the base of the natural logarithm, approximately equal to 2.71828.
Given:
- The principal amount ([tex]\( P \)[/tex]) is [tex]$400. - The annual interest rate (\( r \)) is 5.5%, which in decimal form is \( 0.055 \). - The time (\( t \)) is 8 years. Next, we can calculate the balance (\( A \)): \[ A = 400 \cdot e^{(0.055 \cdot 8)} \] From the provided continuous compounding formula and given values, we find that when these values are input into the formula, we get: \[ A \approx \$[/tex]621.08 \]
Therefore, the balance after 8 years will be approximately:
[tex]\[ \boxed{\$621.08} \][/tex]
[tex]\[ A = P \cdot e^{rt} \][/tex]
where:
- [tex]\( A \)[/tex] is the amount of money accumulated after [tex]\( n \)[/tex] years, including interest.
- [tex]\( P \)[/tex] is the principal amount (the initial amount of money).
- [tex]\( r \)[/tex] is the annual interest rate (in decimal form).
- [tex]\( t \)[/tex] is the time the money is invested or borrowed for, in years.
- [tex]\( e \)[/tex] is the base of the natural logarithm, approximately equal to 2.71828.
Given:
- The principal amount ([tex]\( P \)[/tex]) is [tex]$400. - The annual interest rate (\( r \)) is 5.5%, which in decimal form is \( 0.055 \). - The time (\( t \)) is 8 years. Next, we can calculate the balance (\( A \)): \[ A = 400 \cdot e^{(0.055 \cdot 8)} \] From the provided continuous compounding formula and given values, we find that when these values are input into the formula, we get: \[ A \approx \$[/tex]621.08 \]
Therefore, the balance after 8 years will be approximately:
[tex]\[ \boxed{\$621.08} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.