Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's analyze the function [tex]\( P(x) = x^3 + x^2 - 42x \)[/tex].
1. Finding the [tex]\( y \)[/tex]-intercept:
The [tex]\( y \)[/tex]-intercept of a function is the value of the function when [tex]\( x = 0 \)[/tex].
Substitute [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ P(0) = 0^3 + 0^2 - 42 \cdot 0 = 0 \][/tex]
Therefore, the [tex]\( y \)[/tex]-intercept is [tex]\( 0 \)[/tex].
2. Finding the [tex]\( x \)[/tex]-intercepts:
The [tex]\( x \)[/tex]-intercepts are the values of [tex]\( x \)[/tex] where the function [tex]\( P(x) = 0 \)[/tex].
We solve the equation:
[tex]\[ x^3 + x^2 - 42x = 0 \][/tex]
Factor out the common term [tex]\( x \)[/tex]:
[tex]\[ x(x^2 + x - 42) = 0 \][/tex]
This gives us one [tex]\( x \)[/tex]-intercept at [tex]\( x = 0 \)[/tex].
Now, we solve the quadratic equation [tex]\( x^2 + x - 42 \)[/tex]:
[tex]\[ x^2 + x - 42 = 0 \][/tex]
Using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] with [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = -42 \)[/tex]:
[tex]\[ x = \frac{-1 \pm \sqrt{1^2 - 4(1)(-42)}}{2(1)} = \frac{-1 \pm \sqrt{1 + 168}}{2} = \frac{-1 \pm \sqrt{169}}{2} = \frac{-1 \pm 13}{2} \][/tex]
Therefore, we get:
[tex]\[ x = \frac{-1 + 13}{2} = 6 \quad \text{and} \quad x = \frac{-1 - 13}{2} = -7 \][/tex]
So, the [tex]\( x \)[/tex]-intercepts are [tex]\( -7 \)[/tex], [tex]\( 0 \)[/tex], and [tex]\( 6 \)[/tex].
3. Analyzing the end behavior as [tex]\( x \rightarrow \infty \)[/tex]:
As [tex]\( x \)[/tex] approaches infinity, the term [tex]\( x^3 \)[/tex] will dominate because it has the highest power.
Therefore:
[tex]\[ \lim_ {x \to \infty} (x^3 + x^2 - 42x) = \infty \][/tex]
4. Analyzing the end behavior as [tex]\( x \rightarrow -\infty \)[/tex]:
Similarly, as [tex]\( x \)[/tex] approaches negative infinity, the term [tex]\( x^3 \)[/tex] will still dominate.
Therefore:
[tex]\[ \lim_ {x \to -\infty} (x^3 + x^2 - 42x) = -\infty \][/tex]
Summarizing all the findings:
- The [tex]\( y \)[/tex]-intercept is [tex]\( \boxed{0} \)[/tex].
- The [tex]\( x \)[/tex]-intercepts are [tex]\( \boxed{-7, 0, 6} \)[/tex].
- When [tex]\( x \rightarrow \infty \)[/tex], [tex]\( y \rightarrow \boxed{\infty} \)[/tex].
- When [tex]\( x \rightarrow -\infty \)[/tex], [tex]\( y \rightarrow \boxed{-\infty} \)[/tex].
1. Finding the [tex]\( y \)[/tex]-intercept:
The [tex]\( y \)[/tex]-intercept of a function is the value of the function when [tex]\( x = 0 \)[/tex].
Substitute [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ P(0) = 0^3 + 0^2 - 42 \cdot 0 = 0 \][/tex]
Therefore, the [tex]\( y \)[/tex]-intercept is [tex]\( 0 \)[/tex].
2. Finding the [tex]\( x \)[/tex]-intercepts:
The [tex]\( x \)[/tex]-intercepts are the values of [tex]\( x \)[/tex] where the function [tex]\( P(x) = 0 \)[/tex].
We solve the equation:
[tex]\[ x^3 + x^2 - 42x = 0 \][/tex]
Factor out the common term [tex]\( x \)[/tex]:
[tex]\[ x(x^2 + x - 42) = 0 \][/tex]
This gives us one [tex]\( x \)[/tex]-intercept at [tex]\( x = 0 \)[/tex].
Now, we solve the quadratic equation [tex]\( x^2 + x - 42 \)[/tex]:
[tex]\[ x^2 + x - 42 = 0 \][/tex]
Using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] with [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = -42 \)[/tex]:
[tex]\[ x = \frac{-1 \pm \sqrt{1^2 - 4(1)(-42)}}{2(1)} = \frac{-1 \pm \sqrt{1 + 168}}{2} = \frac{-1 \pm \sqrt{169}}{2} = \frac{-1 \pm 13}{2} \][/tex]
Therefore, we get:
[tex]\[ x = \frac{-1 + 13}{2} = 6 \quad \text{and} \quad x = \frac{-1 - 13}{2} = -7 \][/tex]
So, the [tex]\( x \)[/tex]-intercepts are [tex]\( -7 \)[/tex], [tex]\( 0 \)[/tex], and [tex]\( 6 \)[/tex].
3. Analyzing the end behavior as [tex]\( x \rightarrow \infty \)[/tex]:
As [tex]\( x \)[/tex] approaches infinity, the term [tex]\( x^3 \)[/tex] will dominate because it has the highest power.
Therefore:
[tex]\[ \lim_ {x \to \infty} (x^3 + x^2 - 42x) = \infty \][/tex]
4. Analyzing the end behavior as [tex]\( x \rightarrow -\infty \)[/tex]:
Similarly, as [tex]\( x \)[/tex] approaches negative infinity, the term [tex]\( x^3 \)[/tex] will still dominate.
Therefore:
[tex]\[ \lim_ {x \to -\infty} (x^3 + x^2 - 42x) = -\infty \][/tex]
Summarizing all the findings:
- The [tex]\( y \)[/tex]-intercept is [tex]\( \boxed{0} \)[/tex].
- The [tex]\( x \)[/tex]-intercepts are [tex]\( \boxed{-7, 0, 6} \)[/tex].
- When [tex]\( x \rightarrow \infty \)[/tex], [tex]\( y \rightarrow \boxed{\infty} \)[/tex].
- When [tex]\( x \rightarrow -\infty \)[/tex], [tex]\( y \rightarrow \boxed{-\infty} \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.