Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To construct a polynomial [tex]\( P(x) \)[/tex] of degree 3 with the given properties, let's follow these steps:
1. Identify the roots and their multiplicities:
- There is a root of multiplicity 2 at [tex]\( x = 4 \)[/tex]. This means [tex]\((x - 4)^2\)[/tex] is a factor of the polynomial.
- There is a root of multiplicity 1 at [tex]\( x = -3 \)[/tex]. This means [tex]\((x + 3)\)[/tex] is a factor of the polynomial.
2. Form the polynomial with these factors:
Using the roots and their multiplicities, the polynomial can be initially written as:
[tex]\[ P(x) = C \cdot (x - 4)^2 \cdot (x + 3) \][/tex]
where [tex]\( C \)[/tex] is a constant coefficient that we need to determine.
3. Determine the constant [tex]\( C \)[/tex] using the y-intercept:
The y-intercept is given as [tex]\((0, -14.4)\)[/tex], which means [tex]\( P(0) = -14.4 \)[/tex]. Plugging [tex]\( x = 0 \)[/tex] into the polynomial will help us find [tex]\( C \)[/tex]:
[tex]\[ P(0) = C \cdot (0 - 4)^2 \cdot (0 + 3) \][/tex]
Simplify the expression:
[tex]\[ P(0) = C \cdot 16 \cdot 3 = 48C \][/tex]
Given that [tex]\( P(0) = -14.4 \)[/tex], we can set up the equation:
[tex]\[ 48C = -14.4 \][/tex]
4. Solve for [tex]\( C \)[/tex]:
[tex]\[ C = \frac{-14.4}{48} = -0.3 \][/tex]
5. Write the final polynomial:
Substituting [tex]\( C = -0.3 \)[/tex] back into the polynomial:
[tex]\[ P(x) = -0.3 \cdot (x - 4)^2 \cdot (x + 3) \][/tex]
Thus, the polynomial [tex]\( P(x) \)[/tex] is:
[tex]\[ P(x) = -0.3 (x - 4)^2 (x + 3) \][/tex]
1. Identify the roots and their multiplicities:
- There is a root of multiplicity 2 at [tex]\( x = 4 \)[/tex]. This means [tex]\((x - 4)^2\)[/tex] is a factor of the polynomial.
- There is a root of multiplicity 1 at [tex]\( x = -3 \)[/tex]. This means [tex]\((x + 3)\)[/tex] is a factor of the polynomial.
2. Form the polynomial with these factors:
Using the roots and their multiplicities, the polynomial can be initially written as:
[tex]\[ P(x) = C \cdot (x - 4)^2 \cdot (x + 3) \][/tex]
where [tex]\( C \)[/tex] is a constant coefficient that we need to determine.
3. Determine the constant [tex]\( C \)[/tex] using the y-intercept:
The y-intercept is given as [tex]\((0, -14.4)\)[/tex], which means [tex]\( P(0) = -14.4 \)[/tex]. Plugging [tex]\( x = 0 \)[/tex] into the polynomial will help us find [tex]\( C \)[/tex]:
[tex]\[ P(0) = C \cdot (0 - 4)^2 \cdot (0 + 3) \][/tex]
Simplify the expression:
[tex]\[ P(0) = C \cdot 16 \cdot 3 = 48C \][/tex]
Given that [tex]\( P(0) = -14.4 \)[/tex], we can set up the equation:
[tex]\[ 48C = -14.4 \][/tex]
4. Solve for [tex]\( C \)[/tex]:
[tex]\[ C = \frac{-14.4}{48} = -0.3 \][/tex]
5. Write the final polynomial:
Substituting [tex]\( C = -0.3 \)[/tex] back into the polynomial:
[tex]\[ P(x) = -0.3 \cdot (x - 4)^2 \cdot (x + 3) \][/tex]
Thus, the polynomial [tex]\( P(x) \)[/tex] is:
[tex]\[ P(x) = -0.3 (x - 4)^2 (x + 3) \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.