Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To construct a polynomial [tex]\( P(x) \)[/tex] of degree 3 with the given properties, let's follow these steps:
1. Identify the roots and their multiplicities:
- There is a root of multiplicity 2 at [tex]\( x = 4 \)[/tex]. This means [tex]\((x - 4)^2\)[/tex] is a factor of the polynomial.
- There is a root of multiplicity 1 at [tex]\( x = -3 \)[/tex]. This means [tex]\((x + 3)\)[/tex] is a factor of the polynomial.
2. Form the polynomial with these factors:
Using the roots and their multiplicities, the polynomial can be initially written as:
[tex]\[ P(x) = C \cdot (x - 4)^2 \cdot (x + 3) \][/tex]
where [tex]\( C \)[/tex] is a constant coefficient that we need to determine.
3. Determine the constant [tex]\( C \)[/tex] using the y-intercept:
The y-intercept is given as [tex]\((0, -14.4)\)[/tex], which means [tex]\( P(0) = -14.4 \)[/tex]. Plugging [tex]\( x = 0 \)[/tex] into the polynomial will help us find [tex]\( C \)[/tex]:
[tex]\[ P(0) = C \cdot (0 - 4)^2 \cdot (0 + 3) \][/tex]
Simplify the expression:
[tex]\[ P(0) = C \cdot 16 \cdot 3 = 48C \][/tex]
Given that [tex]\( P(0) = -14.4 \)[/tex], we can set up the equation:
[tex]\[ 48C = -14.4 \][/tex]
4. Solve for [tex]\( C \)[/tex]:
[tex]\[ C = \frac{-14.4}{48} = -0.3 \][/tex]
5. Write the final polynomial:
Substituting [tex]\( C = -0.3 \)[/tex] back into the polynomial:
[tex]\[ P(x) = -0.3 \cdot (x - 4)^2 \cdot (x + 3) \][/tex]
Thus, the polynomial [tex]\( P(x) \)[/tex] is:
[tex]\[ P(x) = -0.3 (x - 4)^2 (x + 3) \][/tex]
1. Identify the roots and their multiplicities:
- There is a root of multiplicity 2 at [tex]\( x = 4 \)[/tex]. This means [tex]\((x - 4)^2\)[/tex] is a factor of the polynomial.
- There is a root of multiplicity 1 at [tex]\( x = -3 \)[/tex]. This means [tex]\((x + 3)\)[/tex] is a factor of the polynomial.
2. Form the polynomial with these factors:
Using the roots and their multiplicities, the polynomial can be initially written as:
[tex]\[ P(x) = C \cdot (x - 4)^2 \cdot (x + 3) \][/tex]
where [tex]\( C \)[/tex] is a constant coefficient that we need to determine.
3. Determine the constant [tex]\( C \)[/tex] using the y-intercept:
The y-intercept is given as [tex]\((0, -14.4)\)[/tex], which means [tex]\( P(0) = -14.4 \)[/tex]. Plugging [tex]\( x = 0 \)[/tex] into the polynomial will help us find [tex]\( C \)[/tex]:
[tex]\[ P(0) = C \cdot (0 - 4)^2 \cdot (0 + 3) \][/tex]
Simplify the expression:
[tex]\[ P(0) = C \cdot 16 \cdot 3 = 48C \][/tex]
Given that [tex]\( P(0) = -14.4 \)[/tex], we can set up the equation:
[tex]\[ 48C = -14.4 \][/tex]
4. Solve for [tex]\( C \)[/tex]:
[tex]\[ C = \frac{-14.4}{48} = -0.3 \][/tex]
5. Write the final polynomial:
Substituting [tex]\( C = -0.3 \)[/tex] back into the polynomial:
[tex]\[ P(x) = -0.3 \cdot (x - 4)^2 \cdot (x + 3) \][/tex]
Thus, the polynomial [tex]\( P(x) \)[/tex] is:
[tex]\[ P(x) = -0.3 (x - 4)^2 (x + 3) \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.