Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's break down the solution step-by-step:
### Part (a): Plot the graph of the car's position versus time
The position function given is:
[tex]\[ x(t) = (5.0 \, \text{m/s}) t + (0.75 \, \text{m/s}^3) t^3 \][/tex]
1. Creating a Table of Values:
We need to calculate [tex]\( x \)[/tex] for various values of [tex]\( t \)[/tex] from 0 to 4 seconds to plot the graph. Here are some sample calculations:
- When [tex]\( t = 0 \)[/tex]:
[tex]\[ x(0) = 5.0 \times 0 + 0.75 \times 0^3 = 0 \][/tex]
- When [tex]\( t = 1 \)[/tex]:
[tex]\[ x(1) = 5.0 \times 1 + 0.75 \times 1^3 = 5.0 + 0.75 = 5.75 \, \text{m} \][/tex]
- When [tex]\( t = 2 \)[/tex]:
[tex]\[ x(2) = 5.0 \times 2 + 0.75 \times 2^3 = 10.0 + 6.0 = 16.0 \, \text{m} \][/tex]
- When [tex]\( t = 3 \)[/tex]:
[tex]\[ x(3) = 5.0 \times 3 + 0.75 \times 3^3 = 15.0 + 20.25 = 35.25 \, \text{m} \][/tex]
- When [tex]\( t = 4 \)[/tex]:
[tex]\[ x(4) = 5.0 \times 4 + 0.75 \times 4^3 = 20.0 + 48.0 = 68.0 \, \text{m} \][/tex]
2. Plotting the Graph:
- (Time [tex]\( t \)[/tex] on the x-axis)
- (Position [tex]\( x(t) \)[/tex] on the y-axis)
- Plot points for [tex]\( t \)[/tex] from 0 to 4 seconds.
- Connect the points smoothly because the relationship [tex]\( x(t) \)[/tex] is continuous and smooth.
### Part (b): Determine the instantaneous velocity at [tex]\( t = 4.0 \)[/tex] seconds
To approximate the instantaneous velocity, we use the average velocities over smaller and smaller time intervals ([tex]\( \Delta t \)[/tex]) around [tex]\( t = 4.0 \)[/tex].
For instantaneous velocity at [tex]\( t = 4.0 \)[/tex]:
[tex]\[ v(t) = \frac{x(t+\Delta t) - x(t)}{\Delta t} \][/tex]
#### For [tex]\( \Delta t = 0.40 \)[/tex]:
[tex]\[ v(4) = \frac{x(4.4) - x(4)}{0.40} \][/tex]
First, calculate [tex]\( x(4.4) \)[/tex]:
[tex]\[ x(4.4) = 5.0 \times 4.4 + 0.75 \times (4.4)^3 = 22 + 0.75 \times 85.184 = 22 + 63.888 = 85.888 \, \text{m} \][/tex]
Therefore,
[tex]\[ v(4) = \frac{85.888 - 68.0}{0.40} = \frac{17.888}{0.40} = 44.72 \, \text{m/s} \][/tex]
#### For [tex]\( \Delta t = 0.20 \)[/tex]:
[tex]\[ v(4) = \frac{x(4.2) - x(4)}{0.20} \][/tex]
First, calculate [tex]\( x(4.2) \)[/tex]:
[tex]\[ x(4.2) = 5.0 \times 4.2 + 0.75 \times (4.2)^3 = 21 + 0.75 \times 74.088 = 21 + 55.566 = 76.566 \, \text{m} \][/tex]
Therefore,
[tex]\[ v(4) = \frac{76.566 - 68.0}{0.20} = \frac{8.566}{0.20} = 42.83 \, \text{m/s} \][/tex]
#### For [tex]\( \Delta t = 0.10 \)[/tex]:
[tex]\[ v(4) = \frac{x(4.1) - x(4)}{0.10} \][/tex]
First, calculate [tex]\( x(4.1) \)[/tex]:
[tex]\[ x(4.1) = 5.0 \times 4.1 + 0.75 \times (4.1)^3 = 20.5 + 0.75 \times 68.921 = 20.5 + 51.69075 = 72.19075 \, \text{m} \][/tex]
Therefore,
[tex]\[ v(4) = \frac{72.19075 - 68.0}{0.10} = \frac{4.19075}{0.10} = 41.91 \, \text{m/s} \][/tex]
### Part (c): Average velocity during the first 4.0 seconds
The formula for average velocity ([tex]\( \bar{v} \)[/tex]) over a time interval is:
[tex]\[ \bar{v} = \frac{x(t_{\text{final}}) - x(t_{\text{initial}})}{t_{\text{final}} - t_{\text{initial}}} \][/tex]
For [tex]\( t = 0 \)[/tex] to [tex]\( t = 4 \)[/tex]:
[tex]\[ \bar{v} = \frac{x(4) - x(0)}{4 - 0} = \frac{68.0 - 0}{4} = 17.0 \, \text{m/s} \][/tex]
### Comparison
- The average velocity over the first 4.0 seconds (17.0 m/s) is significantly lower than the instantaneous velocities at [tex]\( t = 4.0 \)[/tex].
- The smaller the time interval ([tex]\(\Delta t\)[/tex]), the more accurate the approximation of instantaneous velocity. The values approximately calculated for [tex]\( v(4) \)[/tex] were 44.72 m/s, 42.83 m/s, and 41.91 m/s with increasingly smaller intervals.
- As expected, given the cubic term in the position function, the velocity increases over time. Thus, the instantaneous velocity at the end of the interval is much higher than the average over the entire interval, which is why the average is lower.
### Part (a): Plot the graph of the car's position versus time
The position function given is:
[tex]\[ x(t) = (5.0 \, \text{m/s}) t + (0.75 \, \text{m/s}^3) t^3 \][/tex]
1. Creating a Table of Values:
We need to calculate [tex]\( x \)[/tex] for various values of [tex]\( t \)[/tex] from 0 to 4 seconds to plot the graph. Here are some sample calculations:
- When [tex]\( t = 0 \)[/tex]:
[tex]\[ x(0) = 5.0 \times 0 + 0.75 \times 0^3 = 0 \][/tex]
- When [tex]\( t = 1 \)[/tex]:
[tex]\[ x(1) = 5.0 \times 1 + 0.75 \times 1^3 = 5.0 + 0.75 = 5.75 \, \text{m} \][/tex]
- When [tex]\( t = 2 \)[/tex]:
[tex]\[ x(2) = 5.0 \times 2 + 0.75 \times 2^3 = 10.0 + 6.0 = 16.0 \, \text{m} \][/tex]
- When [tex]\( t = 3 \)[/tex]:
[tex]\[ x(3) = 5.0 \times 3 + 0.75 \times 3^3 = 15.0 + 20.25 = 35.25 \, \text{m} \][/tex]
- When [tex]\( t = 4 \)[/tex]:
[tex]\[ x(4) = 5.0 \times 4 + 0.75 \times 4^3 = 20.0 + 48.0 = 68.0 \, \text{m} \][/tex]
2. Plotting the Graph:
- (Time [tex]\( t \)[/tex] on the x-axis)
- (Position [tex]\( x(t) \)[/tex] on the y-axis)
- Plot points for [tex]\( t \)[/tex] from 0 to 4 seconds.
- Connect the points smoothly because the relationship [tex]\( x(t) \)[/tex] is continuous and smooth.
### Part (b): Determine the instantaneous velocity at [tex]\( t = 4.0 \)[/tex] seconds
To approximate the instantaneous velocity, we use the average velocities over smaller and smaller time intervals ([tex]\( \Delta t \)[/tex]) around [tex]\( t = 4.0 \)[/tex].
For instantaneous velocity at [tex]\( t = 4.0 \)[/tex]:
[tex]\[ v(t) = \frac{x(t+\Delta t) - x(t)}{\Delta t} \][/tex]
#### For [tex]\( \Delta t = 0.40 \)[/tex]:
[tex]\[ v(4) = \frac{x(4.4) - x(4)}{0.40} \][/tex]
First, calculate [tex]\( x(4.4) \)[/tex]:
[tex]\[ x(4.4) = 5.0 \times 4.4 + 0.75 \times (4.4)^3 = 22 + 0.75 \times 85.184 = 22 + 63.888 = 85.888 \, \text{m} \][/tex]
Therefore,
[tex]\[ v(4) = \frac{85.888 - 68.0}{0.40} = \frac{17.888}{0.40} = 44.72 \, \text{m/s} \][/tex]
#### For [tex]\( \Delta t = 0.20 \)[/tex]:
[tex]\[ v(4) = \frac{x(4.2) - x(4)}{0.20} \][/tex]
First, calculate [tex]\( x(4.2) \)[/tex]:
[tex]\[ x(4.2) = 5.0 \times 4.2 + 0.75 \times (4.2)^3 = 21 + 0.75 \times 74.088 = 21 + 55.566 = 76.566 \, \text{m} \][/tex]
Therefore,
[tex]\[ v(4) = \frac{76.566 - 68.0}{0.20} = \frac{8.566}{0.20} = 42.83 \, \text{m/s} \][/tex]
#### For [tex]\( \Delta t = 0.10 \)[/tex]:
[tex]\[ v(4) = \frac{x(4.1) - x(4)}{0.10} \][/tex]
First, calculate [tex]\( x(4.1) \)[/tex]:
[tex]\[ x(4.1) = 5.0 \times 4.1 + 0.75 \times (4.1)^3 = 20.5 + 0.75 \times 68.921 = 20.5 + 51.69075 = 72.19075 \, \text{m} \][/tex]
Therefore,
[tex]\[ v(4) = \frac{72.19075 - 68.0}{0.10} = \frac{4.19075}{0.10} = 41.91 \, \text{m/s} \][/tex]
### Part (c): Average velocity during the first 4.0 seconds
The formula for average velocity ([tex]\( \bar{v} \)[/tex]) over a time interval is:
[tex]\[ \bar{v} = \frac{x(t_{\text{final}}) - x(t_{\text{initial}})}{t_{\text{final}} - t_{\text{initial}}} \][/tex]
For [tex]\( t = 0 \)[/tex] to [tex]\( t = 4 \)[/tex]:
[tex]\[ \bar{v} = \frac{x(4) - x(0)}{4 - 0} = \frac{68.0 - 0}{4} = 17.0 \, \text{m/s} \][/tex]
### Comparison
- The average velocity over the first 4.0 seconds (17.0 m/s) is significantly lower than the instantaneous velocities at [tex]\( t = 4.0 \)[/tex].
- The smaller the time interval ([tex]\(\Delta t\)[/tex]), the more accurate the approximation of instantaneous velocity. The values approximately calculated for [tex]\( v(4) \)[/tex] were 44.72 m/s, 42.83 m/s, and 41.91 m/s with increasingly smaller intervals.
- As expected, given the cubic term in the position function, the velocity increases over time. Thus, the instantaneous velocity at the end of the interval is much higher than the average over the entire interval, which is why the average is lower.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.