Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

If the expression below is rewritten in the form [tex]$a+bi$[/tex], where [tex]$a$[/tex] and [tex][tex]$b$[/tex][/tex] are real numbers, what is the value of [tex]$a$[/tex]? (Note: [tex]$i=\sqrt{-1}$[/tex])

[tex]\frac{8-i}{3-2i}[/tex]


Sagot :

To solve the expression [tex]\(\frac{8 - i}{3 - 2i}\)[/tex] in the form [tex]\(a + bi\)[/tex], where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are real numbers, we need to simplify it. Here is the step-by-step procedure to rewrite it and identify the value of [tex]\(a\)[/tex]:

1. Complex Conjugate Multiplication:
Multiply both the numerator and the denominator by the conjugate of the denominator. The conjugate of [tex]\(3 - 2i\)[/tex] is [tex]\(3 + 2i\)[/tex].

Thus, the expression becomes:
[tex]\[ \frac{(8 - i)(3 + 2i)}{(3 - 2i)(3 + 2i)} \][/tex]

2. Simplify the Denominator:
The denominator is a difference of squares which simplifies as follows:
[tex]\[ (3 - 2i)(3 + 2i) = 3^2 - (2i)^2 = 9 - 4i^2 = 9 - 4(-1) = 9 + 4 = 13 \][/tex]

3. Expand the Numerator:
Next, expand the numerator:
[tex]\[ (8 - i)(3 + 2i) = 8 \cdot 3 + 8 \cdot 2i - i \cdot 3 - i \cdot 2i \][/tex]
Simplify each term:
[tex]\[ = 24 + 16i - 3i - 2i^2 = 24 + 13i - 2(-1) = 24 + 13i + 2 = 26 + 13i \][/tex]

4. Divide Terms in the Numerator by the Denominator:
Now, divide each part of the complex number by the denominator 13:
[tex]\[ \frac{26 + 13i}{13} = \frac{26}{13} + \frac{13i}{13} = 2 + i \][/tex]

5. Identify [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
The resulting expression is [tex]\(2 + i\)[/tex]. Here we can see the real part [tex]\(a\)[/tex] is [tex]\(2\)[/tex] and the imaginary part [tex]\(b\)[/tex] is [tex]\(1\)[/tex].

Thus, in the expression [tex]\(\frac{8 - i}{3 - 2i} = 2 + i\)[/tex], the value of [tex]\(a\)[/tex] is:
[tex]\[ \boxed{2} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.