Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Select the correct answer.

Which property of exponents must be used first to solve this expression?

[tex] \left(x y^2\right)^{\frac{1}{3}} [/tex]

A. [tex] \frac{a^m}{a^n}=a^{m-n} [/tex]

B. [tex] a^m a^n=a^{m+n} [/tex]

C. [tex] \left(\frac{a}{b}\right)^m=\frac{a^m}{b^m} [/tex]

D. [tex] (a b)^n=a^n b^n [/tex]


Sagot :

To simplify the expression [tex]\(\left(x y^2\right)^{\frac{1}{3}}\)[/tex], you need to apply the properties of exponents in the correct order to break it down step-by-step.

In this specific problem, you need to raise both the [tex]\(x\)[/tex] and [tex]\(y^2\)[/tex] inside the parentheses to the power of [tex]\(\frac{1}{3}\)[/tex] because this encompasses the entire product within the parentheses.

Therefore, the property of exponents you should use first is:

D. [tex]\((a b)^n = a^n b^n\)[/tex]

This property allows you to distribute the exponent [tex]\(\frac{1}{3}\)[/tex] to both [tex]\(x\)[/tex] and [tex]\(y^2\)[/tex] individually:
[tex]$ \left(x y^2\right)^{\frac{1}{3}} = x^{\frac{1}{3}} (y^2)^{\frac{1}{3}} $[/tex]