Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the inverse of the function [tex]\( f(x) = 9x + 5 \)[/tex], follow these steps:
1. Express the function using [tex]\( y \)[/tex] instead of [tex]\( f(x) \)[/tex]:
[tex]\[ y = 9x + 5 \][/tex]
2. Swap the roles of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]. This is because the inverse function will swap the dependent and independent variables:
[tex]\[ x = 9y + 5 \][/tex]
3. Solve for [tex]\( y \)[/tex]. This step involves isolating [tex]\( y \)[/tex] on one side of the equation:
\begin{align}
x &= 9y + 5 \\
x - 5 &= 9y \\
y &= \frac{x - 5}{9}
\end{align}
4. Rewrite the final equation as the inverse function [tex]\( f^{-1}(x) \)[/tex]:
[tex]\[ f^{-1}(x) = \frac{x - 5}{9} \][/tex]
Now, we need to determine if this inverse relation is indeed a function. We can check this by considering if the original function [tex]\( f(x) = 9x + 5 \)[/tex] is one-to-one, meaning it passes the horizontal line test.
Since [tex]\( f(x) = 9x + 5 \)[/tex] is a linear function with a non-zero slope (specifically, a positive slope of 9), it is strictly increasing. Therefore, every horizontal line will intersect the graph of [tex]\( f(x) \)[/tex] at most once. A strictly increasing function guarantees that the inverse will also pass the vertical line test and be a function.
Thus, the inverse function is:
[tex]\[ f^{-1}(x) = \frac{x - 5}{9} \][/tex]
And indeed, [tex]\( f^{-1}(x) \)[/tex] is a function.
1. Express the function using [tex]\( y \)[/tex] instead of [tex]\( f(x) \)[/tex]:
[tex]\[ y = 9x + 5 \][/tex]
2. Swap the roles of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]. This is because the inverse function will swap the dependent and independent variables:
[tex]\[ x = 9y + 5 \][/tex]
3. Solve for [tex]\( y \)[/tex]. This step involves isolating [tex]\( y \)[/tex] on one side of the equation:
\begin{align}
x &= 9y + 5 \\
x - 5 &= 9y \\
y &= \frac{x - 5}{9}
\end{align}
4. Rewrite the final equation as the inverse function [tex]\( f^{-1}(x) \)[/tex]:
[tex]\[ f^{-1}(x) = \frac{x - 5}{9} \][/tex]
Now, we need to determine if this inverse relation is indeed a function. We can check this by considering if the original function [tex]\( f(x) = 9x + 5 \)[/tex] is one-to-one, meaning it passes the horizontal line test.
Since [tex]\( f(x) = 9x + 5 \)[/tex] is a linear function with a non-zero slope (specifically, a positive slope of 9), it is strictly increasing. Therefore, every horizontal line will intersect the graph of [tex]\( f(x) \)[/tex] at most once. A strictly increasing function guarantees that the inverse will also pass the vertical line test and be a function.
Thus, the inverse function is:
[tex]\[ f^{-1}(x) = \frac{x - 5}{9} \][/tex]
And indeed, [tex]\( f^{-1}(x) \)[/tex] is a function.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.