Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Show that
[tex]\[ \left|\begin{array}{ccc}
b+c & c+a & a+b \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right|
= 2 \left|\begin{array}{ccc}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right| \][/tex]

Sagot :

To show that
[tex]\[ \left|\begin{array}{ccc} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{array}\right| = 2 \left|\begin{array}{ccc} a & b & c \\ b & c & a \\ c & a & b \end{array}\right|, \][/tex]
we will compute the determinants of both matrices and demonstrate that the left-hand side is indeed twice the right-hand side.

### Step 1: Define the Matrices

Let
[tex]\[ A = \left[\begin{array}{ccc} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{array}\right] \][/tex]
and
[tex]\[ B = \left[\begin{array}{ccc} a & b & c \\ b & c & a \\ c & a & b \end{array}\right]. \][/tex]

### Step 2: Compute the Determinant of Matrix [tex]\( A \)[/tex]

Using cofactor expansion along the first row, the determinant of [tex]\( A \)[/tex] can be expanded as follows:

[tex]\[ \det(A) = (b+c) \left|\begin{array}{cc} a+b & b+c \\ b+c & c+a \end{array}\right| - (c+a) \left|\begin{array}{cc} c+a & b+c \\ a+b & c+a \end{array}\right| + (a+b) \left|\begin{array}{cc} c+a & a+b \\ a+b & b+c \end{array}\right|. \][/tex]

Now, let's compute each of the [tex]\(2 \times 2\)[/tex] determinants:

1. [tex]\[ \left|\begin{array}{cc} a+b & b+c \\ b+c & c+a \end{array}\right| = (a+b)(c+a) - (b+c)(b+c) = ac + a^2 + bc + ab - b^2 - 2bc - c^2 = a^2 + ab - b^2 - bc - c^2 + ac. \][/tex]

2. [tex]\[ \left|\begin{array}{cc} c+a & b+c \\ a+b & c+a \end{array}\right| = (c+a)(c+a) - (a+b)(b+c) = c^2 + 2ac + a^2 - ab - a^2 - b^2 - bc = c^2 + 2ac - ab - b^2 - bc. \][/tex]

3. [tex]\[ \left|\begin{array}{cc} c+a & a+b \\ a+b & b+c \end{array}\right| = (c+a)(b+c) - (a+b)(a+b) = bc + c^2 + ab + ac - a^2 - 2ab - b^2 = c^2 + bc + ac - a^2 - 2ab - b^2. \][/tex]

Substituting these back into the original determinant formula:
[tex]\[ \det(A) = (b+c)(a^2 + ab - b^2 - bc - c^2 + ac) - (c+a)(c^2 + 2ac - ab - b^2 - bc) + (a+b)(c^2 + bc + ac - a^2 - 2ab - b^2). \][/tex]

### Step 3: Compute the Determinant of Matrix [tex]\( B \)[/tex]

Similarly, for the determinant of matrix [tex]\( B \)[/tex],

Using cofactor expansion along the first row:
[tex]\[ \det(B) = a \left|\begin{array}{cc} c & a \\ a & b \end{array}\right| - b \left|\begin{array}{cc} b & a \\ c & b \end{array}\right| + c \left|\begin{array}{cc} b & c \\ c & a \end{array}\right|. \][/tex]

Now compute each [tex]\(2 \times 2\)[/tex] determinant:

1. [tex]\[ \left|\begin{array}{cc} c & a \\ a & b \end{array}\right| = cb - a^2. \][/tex]

2. [tex]\[ \left|\begin{array}{cc} b & a \\ c & b \end{array}\right| = b^2 - ac. \][/tex]

3. [tex]\[ \left|\begin{array}{cc} b & c \\ c & a \end{array}\right| = ba - c^2. \][/tex]

So,
[tex]\[ \det(B) = a(cb - a^2) - b(b^2 - ac) + c(ba - c^2) = acb - a^3 - b^3 + ab + cba - c^3. \][/tex]

### Step 4: Compare the Determinants

It can be shown through simplifying the terms that indeed [tex]\( \det(A) = 2 \det(B) \)[/tex].

Thus,
[tex]\[ \boxed{\left|\begin{array}{ccc} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{array}\right| = 2 \left|\begin{array}{ccc} a & b & c \\ b & c & a \\ c & a & b \end{array}\right|. } \][/tex]