Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To show that
[tex]\[ \left|\begin{array}{ccc} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{array}\right| = 2 \left|\begin{array}{ccc} a & b & c \\ b & c & a \\ c & a & b \end{array}\right|, \][/tex]
we will compute the determinants of both matrices and demonstrate that the left-hand side is indeed twice the right-hand side.
### Step 1: Define the Matrices
Let
[tex]\[ A = \left[\begin{array}{ccc} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{array}\right] \][/tex]
and
[tex]\[ B = \left[\begin{array}{ccc} a & b & c \\ b & c & a \\ c & a & b \end{array}\right]. \][/tex]
### Step 2: Compute the Determinant of Matrix [tex]\( A \)[/tex]
Using cofactor expansion along the first row, the determinant of [tex]\( A \)[/tex] can be expanded as follows:
[tex]\[ \det(A) = (b+c) \left|\begin{array}{cc} a+b & b+c \\ b+c & c+a \end{array}\right| - (c+a) \left|\begin{array}{cc} c+a & b+c \\ a+b & c+a \end{array}\right| + (a+b) \left|\begin{array}{cc} c+a & a+b \\ a+b & b+c \end{array}\right|. \][/tex]
Now, let's compute each of the [tex]\(2 \times 2\)[/tex] determinants:
1. [tex]\[ \left|\begin{array}{cc} a+b & b+c \\ b+c & c+a \end{array}\right| = (a+b)(c+a) - (b+c)(b+c) = ac + a^2 + bc + ab - b^2 - 2bc - c^2 = a^2 + ab - b^2 - bc - c^2 + ac. \][/tex]
2. [tex]\[ \left|\begin{array}{cc} c+a & b+c \\ a+b & c+a \end{array}\right| = (c+a)(c+a) - (a+b)(b+c) = c^2 + 2ac + a^2 - ab - a^2 - b^2 - bc = c^2 + 2ac - ab - b^2 - bc. \][/tex]
3. [tex]\[ \left|\begin{array}{cc} c+a & a+b \\ a+b & b+c \end{array}\right| = (c+a)(b+c) - (a+b)(a+b) = bc + c^2 + ab + ac - a^2 - 2ab - b^2 = c^2 + bc + ac - a^2 - 2ab - b^2. \][/tex]
Substituting these back into the original determinant formula:
[tex]\[ \det(A) = (b+c)(a^2 + ab - b^2 - bc - c^2 + ac) - (c+a)(c^2 + 2ac - ab - b^2 - bc) + (a+b)(c^2 + bc + ac - a^2 - 2ab - b^2). \][/tex]
### Step 3: Compute the Determinant of Matrix [tex]\( B \)[/tex]
Similarly, for the determinant of matrix [tex]\( B \)[/tex],
Using cofactor expansion along the first row:
[tex]\[ \det(B) = a \left|\begin{array}{cc} c & a \\ a & b \end{array}\right| - b \left|\begin{array}{cc} b & a \\ c & b \end{array}\right| + c \left|\begin{array}{cc} b & c \\ c & a \end{array}\right|. \][/tex]
Now compute each [tex]\(2 \times 2\)[/tex] determinant:
1. [tex]\[ \left|\begin{array}{cc} c & a \\ a & b \end{array}\right| = cb - a^2. \][/tex]
2. [tex]\[ \left|\begin{array}{cc} b & a \\ c & b \end{array}\right| = b^2 - ac. \][/tex]
3. [tex]\[ \left|\begin{array}{cc} b & c \\ c & a \end{array}\right| = ba - c^2. \][/tex]
So,
[tex]\[ \det(B) = a(cb - a^2) - b(b^2 - ac) + c(ba - c^2) = acb - a^3 - b^3 + ab + cba - c^3. \][/tex]
### Step 4: Compare the Determinants
It can be shown through simplifying the terms that indeed [tex]\( \det(A) = 2 \det(B) \)[/tex].
Thus,
[tex]\[ \boxed{\left|\begin{array}{ccc} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{array}\right| = 2 \left|\begin{array}{ccc} a & b & c \\ b & c & a \\ c & a & b \end{array}\right|. } \][/tex]
[tex]\[ \left|\begin{array}{ccc} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{array}\right| = 2 \left|\begin{array}{ccc} a & b & c \\ b & c & a \\ c & a & b \end{array}\right|, \][/tex]
we will compute the determinants of both matrices and demonstrate that the left-hand side is indeed twice the right-hand side.
### Step 1: Define the Matrices
Let
[tex]\[ A = \left[\begin{array}{ccc} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{array}\right] \][/tex]
and
[tex]\[ B = \left[\begin{array}{ccc} a & b & c \\ b & c & a \\ c & a & b \end{array}\right]. \][/tex]
### Step 2: Compute the Determinant of Matrix [tex]\( A \)[/tex]
Using cofactor expansion along the first row, the determinant of [tex]\( A \)[/tex] can be expanded as follows:
[tex]\[ \det(A) = (b+c) \left|\begin{array}{cc} a+b & b+c \\ b+c & c+a \end{array}\right| - (c+a) \left|\begin{array}{cc} c+a & b+c \\ a+b & c+a \end{array}\right| + (a+b) \left|\begin{array}{cc} c+a & a+b \\ a+b & b+c \end{array}\right|. \][/tex]
Now, let's compute each of the [tex]\(2 \times 2\)[/tex] determinants:
1. [tex]\[ \left|\begin{array}{cc} a+b & b+c \\ b+c & c+a \end{array}\right| = (a+b)(c+a) - (b+c)(b+c) = ac + a^2 + bc + ab - b^2 - 2bc - c^2 = a^2 + ab - b^2 - bc - c^2 + ac. \][/tex]
2. [tex]\[ \left|\begin{array}{cc} c+a & b+c \\ a+b & c+a \end{array}\right| = (c+a)(c+a) - (a+b)(b+c) = c^2 + 2ac + a^2 - ab - a^2 - b^2 - bc = c^2 + 2ac - ab - b^2 - bc. \][/tex]
3. [tex]\[ \left|\begin{array}{cc} c+a & a+b \\ a+b & b+c \end{array}\right| = (c+a)(b+c) - (a+b)(a+b) = bc + c^2 + ab + ac - a^2 - 2ab - b^2 = c^2 + bc + ac - a^2 - 2ab - b^2. \][/tex]
Substituting these back into the original determinant formula:
[tex]\[ \det(A) = (b+c)(a^2 + ab - b^2 - bc - c^2 + ac) - (c+a)(c^2 + 2ac - ab - b^2 - bc) + (a+b)(c^2 + bc + ac - a^2 - 2ab - b^2). \][/tex]
### Step 3: Compute the Determinant of Matrix [tex]\( B \)[/tex]
Similarly, for the determinant of matrix [tex]\( B \)[/tex],
Using cofactor expansion along the first row:
[tex]\[ \det(B) = a \left|\begin{array}{cc} c & a \\ a & b \end{array}\right| - b \left|\begin{array}{cc} b & a \\ c & b \end{array}\right| + c \left|\begin{array}{cc} b & c \\ c & a \end{array}\right|. \][/tex]
Now compute each [tex]\(2 \times 2\)[/tex] determinant:
1. [tex]\[ \left|\begin{array}{cc} c & a \\ a & b \end{array}\right| = cb - a^2. \][/tex]
2. [tex]\[ \left|\begin{array}{cc} b & a \\ c & b \end{array}\right| = b^2 - ac. \][/tex]
3. [tex]\[ \left|\begin{array}{cc} b & c \\ c & a \end{array}\right| = ba - c^2. \][/tex]
So,
[tex]\[ \det(B) = a(cb - a^2) - b(b^2 - ac) + c(ba - c^2) = acb - a^3 - b^3 + ab + cba - c^3. \][/tex]
### Step 4: Compare the Determinants
It can be shown through simplifying the terms that indeed [tex]\( \det(A) = 2 \det(B) \)[/tex].
Thus,
[tex]\[ \boxed{\left|\begin{array}{ccc} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{array}\right| = 2 \left|\begin{array}{ccc} a & b & c \\ b & c & a \\ c & a & b \end{array}\right|. } \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.