Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure! Let's graph the exponential function [tex]\( f(x) = \left(\frac{1}{4}\right)^x \)[/tex].
We will first understand how the function behaves, then choose five points to plot, and finally draw the asymptote.
1. Behavior of the Function:
- For [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \left(\frac{1}{4}\right)^0 = 1 \][/tex]
- For [tex]\( x > 0 \)[/tex]:
As [tex]\( x \)[/tex] increases, [tex]\( \left(\frac{1}{4}\right)^x \)[/tex] gets smaller because we are raising 1/4 to a positive power.
- For [tex]\( x < 0 \)[/tex]:
As [tex]\( x \)[/tex] decreases, [tex]\( \left(\frac{1}{4}\right)^x \)[/tex] gets larger because raising a fraction to a negative power results in a large positive number.
2. Five Points to Plot:
- Point 1: For [tex]\( x = -2 \)[/tex]:
[tex]\[ f(-2) = \left(\frac{1}{4}\right)^{-2} = \left(\frac{4}{1}\right)^2 = 16 \][/tex]
- Point 2: For [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = \left(\frac{1}{4}\right)^{-1} = \frac{4}{1} = 4 \][/tex]
- Point 3: For [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \left(\frac{1}{4}\right)^0 = 1 \][/tex]
- Point 4: For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = \left(\frac{1}{4}\right)^1 = \frac{1}{4} = 0.25 \][/tex]
- Point 5: For [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = \left(\frac{1}{4}\right)^2 = \left(\frac{1}{4}\right) \cdot \left(\frac{1}{4}\right) = \frac{1}{16} = 0.0625 \][/tex]
3. Drawing the Asymptote:
The horizontal asymptote for the function [tex]\( f(x) = \left(\frac{1}{4}\right)^x \)[/tex] is [tex]\( y = 0 \)[/tex]. This is because as [tex]\( x \)[/tex] becomes very large and positive, [tex]\( \left(\frac{1}{4}\right)^x \)[/tex] approaches 0 but never actually reaches it.
4. Plotting Points and Drawing the Graph:
Now, let's plot these five points on a coordinate plane and draw the curve.
- Point 1: (-2, 16)
- Point 2: (-1, 4)
- Point 3: (0, 1)
- Point 4: (1, 0.25)
- Point 5: (2, 0.0625)
These points help us understand the shape of the curve, which should decrease rapidly as x increases towards positive infinity.
The curve will pass through the points we calculated and get closer and closer to the asymptote [tex]\( y = 0 \)[/tex] as [tex]\( x \)[/tex] increases.
Here's a visual representation and script for the graphing steps:
1. Mark the 5 points on a graph.
2. Connect the points smoothly to show the exponential decay.
3. Draw the horizontal asymptote at [tex]\( y = 0 \)[/tex].
The resulting graph should look like this:
```
^
|
|
|
|
|
|
|
|
|
|* -----------------------------
|________________________________>
```
The points (2, 0.0625), (1, 0.25), (0, 1), (-1, 4), and (-2, 16) are marked, and the horizontal asymptote of [tex]\( y = 0 \)[/tex] is drawn as a dashed line.
We will first understand how the function behaves, then choose five points to plot, and finally draw the asymptote.
1. Behavior of the Function:
- For [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \left(\frac{1}{4}\right)^0 = 1 \][/tex]
- For [tex]\( x > 0 \)[/tex]:
As [tex]\( x \)[/tex] increases, [tex]\( \left(\frac{1}{4}\right)^x \)[/tex] gets smaller because we are raising 1/4 to a positive power.
- For [tex]\( x < 0 \)[/tex]:
As [tex]\( x \)[/tex] decreases, [tex]\( \left(\frac{1}{4}\right)^x \)[/tex] gets larger because raising a fraction to a negative power results in a large positive number.
2. Five Points to Plot:
- Point 1: For [tex]\( x = -2 \)[/tex]:
[tex]\[ f(-2) = \left(\frac{1}{4}\right)^{-2} = \left(\frac{4}{1}\right)^2 = 16 \][/tex]
- Point 2: For [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = \left(\frac{1}{4}\right)^{-1} = \frac{4}{1} = 4 \][/tex]
- Point 3: For [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \left(\frac{1}{4}\right)^0 = 1 \][/tex]
- Point 4: For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = \left(\frac{1}{4}\right)^1 = \frac{1}{4} = 0.25 \][/tex]
- Point 5: For [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = \left(\frac{1}{4}\right)^2 = \left(\frac{1}{4}\right) \cdot \left(\frac{1}{4}\right) = \frac{1}{16} = 0.0625 \][/tex]
3. Drawing the Asymptote:
The horizontal asymptote for the function [tex]\( f(x) = \left(\frac{1}{4}\right)^x \)[/tex] is [tex]\( y = 0 \)[/tex]. This is because as [tex]\( x \)[/tex] becomes very large and positive, [tex]\( \left(\frac{1}{4}\right)^x \)[/tex] approaches 0 but never actually reaches it.
4. Plotting Points and Drawing the Graph:
Now, let's plot these five points on a coordinate plane and draw the curve.
- Point 1: (-2, 16)
- Point 2: (-1, 4)
- Point 3: (0, 1)
- Point 4: (1, 0.25)
- Point 5: (2, 0.0625)
These points help us understand the shape of the curve, which should decrease rapidly as x increases towards positive infinity.
The curve will pass through the points we calculated and get closer and closer to the asymptote [tex]\( y = 0 \)[/tex] as [tex]\( x \)[/tex] increases.
Here's a visual representation and script for the graphing steps:
1. Mark the 5 points on a graph.
2. Connect the points smoothly to show the exponential decay.
3. Draw the horizontal asymptote at [tex]\( y = 0 \)[/tex].
The resulting graph should look like this:
```
^
|
|
|
|
|
|
|
|
|
|* -----------------------------
|________________________________>
```
The points (2, 0.0625), (1, 0.25), (0, 1), (-1, 4), and (-2, 16) are marked, and the horizontal asymptote of [tex]\( y = 0 \)[/tex] is drawn as a dashed line.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.