Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure! Let's graph the exponential function [tex]\( f(x) = \left(\frac{1}{4}\right)^x \)[/tex].
We will first understand how the function behaves, then choose five points to plot, and finally draw the asymptote.
1. Behavior of the Function:
- For [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \left(\frac{1}{4}\right)^0 = 1 \][/tex]
- For [tex]\( x > 0 \)[/tex]:
As [tex]\( x \)[/tex] increases, [tex]\( \left(\frac{1}{4}\right)^x \)[/tex] gets smaller because we are raising 1/4 to a positive power.
- For [tex]\( x < 0 \)[/tex]:
As [tex]\( x \)[/tex] decreases, [tex]\( \left(\frac{1}{4}\right)^x \)[/tex] gets larger because raising a fraction to a negative power results in a large positive number.
2. Five Points to Plot:
- Point 1: For [tex]\( x = -2 \)[/tex]:
[tex]\[ f(-2) = \left(\frac{1}{4}\right)^{-2} = \left(\frac{4}{1}\right)^2 = 16 \][/tex]
- Point 2: For [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = \left(\frac{1}{4}\right)^{-1} = \frac{4}{1} = 4 \][/tex]
- Point 3: For [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \left(\frac{1}{4}\right)^0 = 1 \][/tex]
- Point 4: For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = \left(\frac{1}{4}\right)^1 = \frac{1}{4} = 0.25 \][/tex]
- Point 5: For [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = \left(\frac{1}{4}\right)^2 = \left(\frac{1}{4}\right) \cdot \left(\frac{1}{4}\right) = \frac{1}{16} = 0.0625 \][/tex]
3. Drawing the Asymptote:
The horizontal asymptote for the function [tex]\( f(x) = \left(\frac{1}{4}\right)^x \)[/tex] is [tex]\( y = 0 \)[/tex]. This is because as [tex]\( x \)[/tex] becomes very large and positive, [tex]\( \left(\frac{1}{4}\right)^x \)[/tex] approaches 0 but never actually reaches it.
4. Plotting Points and Drawing the Graph:
Now, let's plot these five points on a coordinate plane and draw the curve.
- Point 1: (-2, 16)
- Point 2: (-1, 4)
- Point 3: (0, 1)
- Point 4: (1, 0.25)
- Point 5: (2, 0.0625)
These points help us understand the shape of the curve, which should decrease rapidly as x increases towards positive infinity.
The curve will pass through the points we calculated and get closer and closer to the asymptote [tex]\( y = 0 \)[/tex] as [tex]\( x \)[/tex] increases.
Here's a visual representation and script for the graphing steps:
1. Mark the 5 points on a graph.
2. Connect the points smoothly to show the exponential decay.
3. Draw the horizontal asymptote at [tex]\( y = 0 \)[/tex].
The resulting graph should look like this:
```
^
|
|
|
|
|
|
|
|
|
|* -----------------------------
|________________________________>
```
The points (2, 0.0625), (1, 0.25), (0, 1), (-1, 4), and (-2, 16) are marked, and the horizontal asymptote of [tex]\( y = 0 \)[/tex] is drawn as a dashed line.
We will first understand how the function behaves, then choose five points to plot, and finally draw the asymptote.
1. Behavior of the Function:
- For [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \left(\frac{1}{4}\right)^0 = 1 \][/tex]
- For [tex]\( x > 0 \)[/tex]:
As [tex]\( x \)[/tex] increases, [tex]\( \left(\frac{1}{4}\right)^x \)[/tex] gets smaller because we are raising 1/4 to a positive power.
- For [tex]\( x < 0 \)[/tex]:
As [tex]\( x \)[/tex] decreases, [tex]\( \left(\frac{1}{4}\right)^x \)[/tex] gets larger because raising a fraction to a negative power results in a large positive number.
2. Five Points to Plot:
- Point 1: For [tex]\( x = -2 \)[/tex]:
[tex]\[ f(-2) = \left(\frac{1}{4}\right)^{-2} = \left(\frac{4}{1}\right)^2 = 16 \][/tex]
- Point 2: For [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = \left(\frac{1}{4}\right)^{-1} = \frac{4}{1} = 4 \][/tex]
- Point 3: For [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \left(\frac{1}{4}\right)^0 = 1 \][/tex]
- Point 4: For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = \left(\frac{1}{4}\right)^1 = \frac{1}{4} = 0.25 \][/tex]
- Point 5: For [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = \left(\frac{1}{4}\right)^2 = \left(\frac{1}{4}\right) \cdot \left(\frac{1}{4}\right) = \frac{1}{16} = 0.0625 \][/tex]
3. Drawing the Asymptote:
The horizontal asymptote for the function [tex]\( f(x) = \left(\frac{1}{4}\right)^x \)[/tex] is [tex]\( y = 0 \)[/tex]. This is because as [tex]\( x \)[/tex] becomes very large and positive, [tex]\( \left(\frac{1}{4}\right)^x \)[/tex] approaches 0 but never actually reaches it.
4. Plotting Points and Drawing the Graph:
Now, let's plot these five points on a coordinate plane and draw the curve.
- Point 1: (-2, 16)
- Point 2: (-1, 4)
- Point 3: (0, 1)
- Point 4: (1, 0.25)
- Point 5: (2, 0.0625)
These points help us understand the shape of the curve, which should decrease rapidly as x increases towards positive infinity.
The curve will pass through the points we calculated and get closer and closer to the asymptote [tex]\( y = 0 \)[/tex] as [tex]\( x \)[/tex] increases.
Here's a visual representation and script for the graphing steps:
1. Mark the 5 points on a graph.
2. Connect the points smoothly to show the exponential decay.
3. Draw the horizontal asymptote at [tex]\( y = 0 \)[/tex].
The resulting graph should look like this:
```
^
|
|
|
|
|
|
|
|
|
|* -----------------------------
|________________________________>
```
The points (2, 0.0625), (1, 0.25), (0, 1), (-1, 4), and (-2, 16) are marked, and the horizontal asymptote of [tex]\( y = 0 \)[/tex] is drawn as a dashed line.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.