Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Graph the exponential function.

[tex]\[ f(x)=\left(\frac{1}{4}\right)^x \][/tex]

Plot five points on the graph of the function, and also draw the asymptote.


Sagot :

Sure! Let's graph the exponential function [tex]\( f(x) = \left(\frac{1}{4}\right)^x \)[/tex].

We will first understand how the function behaves, then choose five points to plot, and finally draw the asymptote.

1. Behavior of the Function:
- For [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \left(\frac{1}{4}\right)^0 = 1 \][/tex]

- For [tex]\( x > 0 \)[/tex]:
As [tex]\( x \)[/tex] increases, [tex]\( \left(\frac{1}{4}\right)^x \)[/tex] gets smaller because we are raising 1/4 to a positive power.

- For [tex]\( x < 0 \)[/tex]:
As [tex]\( x \)[/tex] decreases, [tex]\( \left(\frac{1}{4}\right)^x \)[/tex] gets larger because raising a fraction to a negative power results in a large positive number.

2. Five Points to Plot:

- Point 1: For [tex]\( x = -2 \)[/tex]:
[tex]\[ f(-2) = \left(\frac{1}{4}\right)^{-2} = \left(\frac{4}{1}\right)^2 = 16 \][/tex]

- Point 2: For [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = \left(\frac{1}{4}\right)^{-1} = \frac{4}{1} = 4 \][/tex]

- Point 3: For [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \left(\frac{1}{4}\right)^0 = 1 \][/tex]

- Point 4: For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = \left(\frac{1}{4}\right)^1 = \frac{1}{4} = 0.25 \][/tex]

- Point 5: For [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = \left(\frac{1}{4}\right)^2 = \left(\frac{1}{4}\right) \cdot \left(\frac{1}{4}\right) = \frac{1}{16} = 0.0625 \][/tex]

3. Drawing the Asymptote:

The horizontal asymptote for the function [tex]\( f(x) = \left(\frac{1}{4}\right)^x \)[/tex] is [tex]\( y = 0 \)[/tex]. This is because as [tex]\( x \)[/tex] becomes very large and positive, [tex]\( \left(\frac{1}{4}\right)^x \)[/tex] approaches 0 but never actually reaches it.

4. Plotting Points and Drawing the Graph:

Now, let's plot these five points on a coordinate plane and draw the curve.

- Point 1: (-2, 16)
- Point 2: (-1, 4)
- Point 3: (0, 1)
- Point 4: (1, 0.25)
- Point 5: (2, 0.0625)

These points help us understand the shape of the curve, which should decrease rapidly as x increases towards positive infinity.

The curve will pass through the points we calculated and get closer and closer to the asymptote [tex]\( y = 0 \)[/tex] as [tex]\( x \)[/tex] increases.

Here's a visual representation and script for the graphing steps:

1. Mark the 5 points on a graph.
2. Connect the points smoothly to show the exponential decay.
3. Draw the horizontal asymptote at [tex]\( y = 0 \)[/tex].

The resulting graph should look like this:

```
^
|
|
|
|

|
|
|
|

|
|* -----------------------------
|________________________________>
```

The points (2, 0.0625), (1, 0.25), (0, 1), (-1, 4), and (-2, 16) are marked, and the horizontal asymptote of [tex]\( y = 0 \)[/tex] is drawn as a dashed line.