Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the probability that a randomly selected customer purchased a medium-sized jacket, we need to first calculate two key quantities: the total number of purchases and the number of purchases of medium-sized jackets.
From the provided table, the number of purchases is distributed in the following manner:
- Small:
- Tee Shirt: 71
- Long Sleeve Shirt: 38
- Jacket: 2
- Medium:
- Tee Shirt: 97
- Long Sleeve Shirt: 41
- Jacket: 23
- Large:
- Tee Shirt: 31
- Long Sleeve Shirt: 11
- Jacket: 0
First, we'll find the total number of purchases by summing up all the values in the table:
[tex]\[ 71 + 38 + 2 + 97 + 41 + 23 + 31 + 11 + 0 = 314 \][/tex]
Thus, the total number of purchases is 314.
Next, we identify the number of medium-sized jackets purchased, which is already given in the table as 23.
The probability of randomly selecting a customer who purchased a medium-sized jacket is given by the ratio of the number of medium-sized jackets to the total number of purchases.
[tex]\[ P (\text{Medium and Jacket}) = \frac{\text{Number of Medium Jackets}}{\text{Total Purchases}} = \frac{23}{314} \][/tex]
This fraction represents the probability in its simplest form given the context of the problem. Simplifying [tex]\(\frac{23}{314}\)[/tex] further does not change that it is the lowest term possible, which is:
[tex]\[ \boxed{\frac{23}{314}} \][/tex]
So, the probability that a randomly chosen customer purchased a medium-sized jacket is [tex]\(\frac{23}{314}\)[/tex].
From the provided table, the number of purchases is distributed in the following manner:
- Small:
- Tee Shirt: 71
- Long Sleeve Shirt: 38
- Jacket: 2
- Medium:
- Tee Shirt: 97
- Long Sleeve Shirt: 41
- Jacket: 23
- Large:
- Tee Shirt: 31
- Long Sleeve Shirt: 11
- Jacket: 0
First, we'll find the total number of purchases by summing up all the values in the table:
[tex]\[ 71 + 38 + 2 + 97 + 41 + 23 + 31 + 11 + 0 = 314 \][/tex]
Thus, the total number of purchases is 314.
Next, we identify the number of medium-sized jackets purchased, which is already given in the table as 23.
The probability of randomly selecting a customer who purchased a medium-sized jacket is given by the ratio of the number of medium-sized jackets to the total number of purchases.
[tex]\[ P (\text{Medium and Jacket}) = \frac{\text{Number of Medium Jackets}}{\text{Total Purchases}} = \frac{23}{314} \][/tex]
This fraction represents the probability in its simplest form given the context of the problem. Simplifying [tex]\(\frac{23}{314}\)[/tex] further does not change that it is the lowest term possible, which is:
[tex]\[ \boxed{\frac{23}{314}} \][/tex]
So, the probability that a randomly chosen customer purchased a medium-sized jacket is [tex]\(\frac{23}{314}\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.